Scheme and Syllabus of M.E. Mechanical Engineering

1st to 4th Semester

Applicable to batch 2025-2027

One Batch One Scheme (OBOS)

PANJAB UNIVERSITY CHANDIGARH

The Department of Mechanical Engineering

Vision

To be Fountainhead of Technological solutions for Needs of Society and Industry.

Mission

1. To impart fundamental engineering skills and knowledge for analysis of engineering problems.

2. To engage with Industry/Society for taking up stimulating problems on merits.

3. To take the project execution to "Minimum Usable Prototype (MUP)" stage/Pilot-testing and secure IP rights.

Core values

- 1. 100% coverage of syllabus by faculty.
- 2. Actual delivery of around 40 lectures for a subject.
- 3. Delivery of lecture for around 50 minutes by a faculty in a lecture class of one hour.
- 4. 100% engagement of Tutorials.
- 5. Presence of faculty in the lab during the entire time of lab class.
- 6. Regular checking of practical files by faculty.

Program Educational Objectives (PEO's)

1. To develop professionals with strong conceptual and practical skills.

2. To enable graduates to acquire research and development competence for implementation at work.

3. To inculcate professional integrity, ethics, responsibility to contribute towards the community for sustainable development.

4. To keep abreast with the latest research in Mechanical Engineering and its applications.

Program Outcomes (PO's)

1.An ability to independently carry out research /investigation and development work to solve practical problems

2.An ability to write and present a substantial technical report/document

3.Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program

Summary of Scheme

Semester	Contact Hours	Credits
Semester 1	20	20
Semester 2	20	20
Semester 3	28	18
Semester 4	28	14
Total	96	72

M.E. Mechanical Engineering First Semester

S.	Subject Code	Subject Name	Scheme of Teaching			Scheme of Examination						
No.			L-T-P	Contact	Credits			Ma	arks			
				hrs/week		The	eory		Practical*			
						Internal Assessment	Univ Exam	Total	Internal Assessment	Univ Exam	Total	
1.	MME101	Advanced Engineering Mathematics	3-1-0	4	4	50	50	100	-	-	-	
2.	MME102	Design of Experiments	3-1-0	4	4	50	50	100	-	-	-	
3.	MME103	Advanced Mechanics of Materials	3-1-0	4	4	50	50	100	-	-	-	
4.	MME104	Rapid Manufacturing	3-1-0	4	4	50	50	100	-	-	-	
5.	MME105(a-j)	Elective-I	3-1-0	4	4	50	50	100	-	-	-	
Total				20	20	250	250	500	-	-	-	

* Practical marks include continuous and end semester evaluation

M.E. Mechanical Engineering Second Semester

			Sch	Scheme of Teaching		Scheme of Examination					
c								Ma	arks		
S. No	Subject Code	Subject		Contact		Th	eory		Pra	ctical*	
INU		Name	L-T-P	hrs/week	Credits	Internal	Univ	Total	Internal	Univ	Total
•				III S/ WCCK		Assessment	Exam	TOtal	Assessment	Exam	TOLAI
1		Continuum	3_1_0	Л	1	50	50	100	_	_	_
1.		Mechanics	5-1-0	-		50	50	100	-	-	-
		Advanced									
2.	MME202	Manufacturing	3-1-0	4	4	50	50	100	-	-	-
		Processes									
		Advances in									
3.	MME203	Engineering	3-1-0	4	4	50	50	100	-	-	-
		Materials									
4	MME204	Structural Dynamics	3-1-0	4	4	50	50	100	_	_	_
			010	•			00	100			
5	MMF205(a-h)	Flective-II	3-1-0	4	4	50	50	100	-	_	_
<u>.</u>				•	·						
Total			20	20	250	250	500	-	-	-	

* Practical marks include continuous and end semester evaluation

M.E. Mechanical Engineering Third Semester

			Sch	neme of Teaching		eme of Teaching Scheme of Examination					
					Marks						
S.	Subject Code	Subject		Contact			Theory	-	Р	ractical*	
No.		Name	L-T-P	hrs/week	Credits	Internal Assessment	Univ Exam	Total	Internal Assessment	Univ Exam	Total
1	MME301	Advanced Machine Design	3-1-0	4	4	50	50	100	-	_	-
2	MME302(a-f)	Elective-III	3-1-0	4	4	50	50	100	-	-	-
3	MME353	Preliminary Thesis	-	20	10	-	-	-	250	-	250
Total			28	18	100	100	200	250	-	250	

*Marks will be awarded by internal institution committee

M.E. Mechanical Engineering Fourth Semester

			Scheme of Teaching		Scheme of Examination						
S. No. Subject Subject						Marks					
	Code	Name	L-T-P	L-T-P Contact Credits		Contact Credits Theory F			Practical*		
				hrs/week		Internal	Univ	Total	Internal	Univ Exam	Total
						Assess	Exam		Assess		
						ment			ment		
1	MME4 51	Thesis work	-	28	14	-	-	-	175	175	350
Total				28	14				175	175	350

*Marks will be awarded by internal institution committee

For Internal assessment only

M.E. Thesis grade will be awarded as

S. No.	Grade	Requirement
1	A+	Publication in SCI/ SCI-E Journal/ E-SCI Journal/Patent
2	А	Publication in Scopus
3	B+	Paper presented in International conference
4	В	Paper presented in National conference

For External Evaluation

Grade as awarded by examiner

Final Grade for thesis

The grade awarded in internal assessment and grade awarded in external assessment are combined and averaged and then final grade is awarded.

Elective-1 Courses in Semester 1

- 1. MME105(a) Quality Control and Reliability
- 2. MME105(b) Manufacturing Science
- 3. MME105(c) Welding Techniques
- 4. MME105(d) Tool and Cutter Design
- 5. MME105(e) Condition Monitoring and Fault Diagnosis
- 6. MME105(f) Advanced Heat Transfer
- 7. MME105(g) Gas Dynamics
- 8. MME105(h) Introduction to Modern Fortran
- 9. MME105(i) Industrial Tribology
- 10. MME105(j) Design of Biomedical Devices and Systems

Elective-II Courses in Semester 2

- 1. MME205 (a) Fluid Dynamics
- 2. MME205 (b) Experimental Stress Analysis
- 3. MME205 (c) Mechanical Behavior of Materials
- 4. MME205 (d) Composite Materials
- 5. MME205 (e) Model Updating
- 6. MME205 (f) Mechatronics
- 7. MME205 (g) Advanced Control System
- 8. MME205 (h) Imaging and Additive Manufacturing

Elective-III Courses in Semester 3

- 1. MME302(a) Modeling of Manufacturing Systems
- 2. MME302(b) Finite Element Method
- 3. MME302(c) Computational Fluid Dynamics
- 4. MME302(d) Vibration Testing
- 5. MME302(e) Optimization Techniques
- 6. MME302(f) Materials Design

Course Code	MME101
Course Title	Advanced Engineering
	Mathematics
Type of Course	Core
LTP	310
Credits	4
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional, Assignments,	50
Quiz)	
Course Prerequisites	Calculus, Differential Equations
Course Objectives	 Acquire the knowledge of special functions and their properties The applications and usefulness of special functions in various engineering problems Solution of ordinary and partial differential equations using an appropriate numerical method. Implementation of numerical methods for a variety of multidisciplinary applications.
Course Outcomes	 1.Adequate knowledge of the power series method to find an analytical solution of differential equations and special functions that arise from the method. 2. Familiarize with derivations of various properties of special functions (Legendre polynomials and Bessel functions) and their recurrence relations. 3. Numerical methods for solving ordinary and partial differential equations. 3. Approximate solutions to otherwise intractable physical engineering problems using numerical techniques.

Note for Examiner- The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

SECTION-A

Series solution of differential equations, Power series methods, Legendre's polynomial, Generating functions, Recurrence relations. Frobenius method, Series solution of Bessel's differential equation, Modified Bessel's functions, Generating functions, Recurrence relations.Equations reducible to Bessel's equation. Sturm Liouville's problem, orthogonal functions, Orthogonality of eigenfunctions, Eigenfunction expansions.

SECTION-B

Numerical solutions of simultaneous and higher order differential equations: Runge-Kutta method, Picard's method. Approximate methods for B.V. problems: Finite difference method.

Approximate and numerical solutions of PDE's: Finite difference approximation to derivatives.

Numerical solutions of elliptic equations (Laplace and Poisson's equations), Parabolic equations and Hyperbolic equations.

RECO	RECOMMENDED BOOKS								
	NAME	AUTHOR(S)	PUBLISHER						
1	Advanced Engineering	Kreyszig, Erwin							
	Mathematics		John Wiley						
2	Numerical Solution of Differential	Jain, R.K.	New Age						
	Equations		International						
			Publishers						
3	Introductory Methods of Numerical								
	Analysis,	Sastry, S.S.	Prentice Hall of India						
3			New Age						
	Numerical Methods for Scientific	Jain, M. K., Iyengar,	International						
	and Engineering Computation	S. R. K., Jain, R. K.	Publishers						
5	Numerical Methods for Engineers	Steven C. Chapra,	Tata McGraw Hill						
		Raymond P. Canale							
6	Elementary Differential Equations	William E. Boyce,							
	and Boundary Value Problems	Richard C. DiPrima:	John Wiley						

Course Code	MME102
Course Title	Design of Experiments
Type of Course	Core
LTP	310
Credits	4
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional, Assignments, Quiz)	50
Course Prerequisites	Calculus, Linear Algebra, Introductory Probability and Statistics
Course Objectives	The course objective is to learn how to plan, design and conduct experiments efficiently and effectively, and analyze the resulting data to obtain objective conclusions. Both design and statistical analysis issues are discussed.
Course Outcomes	 Introduction of the experimental Design Understanding the optimization using Response Surface Methodology Understanding the optimization using Taguchi Philosophy

Note for Examiner- The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

SECTION-A

Introduction:

Strategy of experimentation, Some typical applications of experimental design, Basic principles, Guidelines for designing experiments, A brief history of statistical design, Using statistical design in experimentation

Simple Comparative Experiments:

Introduction, Basic statistical concepts, Sampling and sampling Distribution, Inferences about the Differences in means, randomized designs, Paired comparison Designs, Inferences about the Variances of Normal Distributions

Introduction To Factorial Design:

Basic definition and principles, Advantages of factorials, The two factor factorial design, General factorial design, Fitting response curves and Surfaces, Blocking in a factorial design

2k and 3k factorial designs Introduction, analysis of the 2k factorial design and 3k factorial design, related problems

Confounding Introduction, confounding in the 2k and 3k factorial design, partial confounding, related problems

Fractional factorial designs Introduction, fractional replication of the 2k factorial design-one-half, one-quarter and the general 2k-p fractional factorial design, design of resolution III, IV and V, related problems

SECTION-B

Regression analysis

Introduction, simple linear regression, hypothesis testing in simple linear regression, interval testing in simple linear regression, model adequacy checking-residual analysis, the lack-of-fit test, the coefficient of determination, Multiple linear regression, hypothesis testing in multiple linear regression, other linear regression models. Related problems

Taguchi Method Of Design Of Experiments:

Concept design, Parameter design, Tolerance design, Quality loss function, Signal-to-Noise ratio, Orthogonal array experiments, Analysis of Mean (ANOM), Quality characteristics, Selection and testing of noise factors, Selection of control factors, Parameter optimization experiment, Parameter design case study.

Response surface methodology

Introduction, the method of steepest ascent, analysis of quadratic models, response surface designs-designs for fitting the 1st order and 2nd order models, related problems

Analysis of Variance (ANOVA):

Introduction, Example of ANOVA process, Degrees of freedom, Error variance and pooling, Error variance and application, Error variance and utilizing empty columns, the F-test (12 Hrs)

TEXT BOOKS							
S.	NAME	AUTHOR(S)	PUBLISHER				
No.							
1	Introduction to Linear	Montgomery D.C.,	John Wiley				
	Regression Analysis	Runger G.C.,					
RECO	RECOMMENDED BOOKS						

1	Process and Product		John Wiley
	Optimization Using	Myers R.H. and	
	Designed Experiments	Montgomery D.C	
2.	Introduction to Quality		UNIPUB,WhitePlains,Ne
	Engineering	Taguchi , G	w York

Course Code	MME103
Course Title	Advanced Mechanics of
	Materials
Type of Course	Core
LTP	310
Credits	4
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional, Assignments,	50
Quiz)	
Prerequisites	Mechanics of Materials
Course Objectives	1. Ability to understand extension of elementary theories to more
	general settings.
	2.Ability to make and understand
	simplifying assumptions about
	kinetics and kinematics so as to
	reduce PDEs of the general theory
	to ODEs.
	3. Use FEM to find approximate
	solutions to BVP which otherwise
	would be difficult or impossible to
	solve.
Course Outcomes	1. Demonstrate the ability to apply
	theory to specific practical
	Situations.
	2. Understand types of Failure and
	specific criteria for design
	2 Dovelop rudimentory
	understanding of numerical
	methods to solve solid mochanics
	nethous to solve solid mechanics

Note for Examiner- The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

SECTION-A

Stress, Strain, Stress-Strain Relations, and Introductory Elasticity

Stress, Stress Tensor, 2D and 3D Stress and Mohr Circle. Strain, Equations of Compatibility, Strain Measurement. Stress-Strain Relations, Hooke's Law, Poisson's Ratio. Strain Energy, Strain Energy for Common Structural Members, Components of

Strain Energy, Saint-Venant's Principle. Plastic Deformation, Simple Tension True Stress-True Strain curve and Instability, Plastic Stress-Strain Relations, Plastic Stress-Strain Increment Relations. Plane Stress Problems, Plane Stress Problems, Airy Stress Function, Solution of Elasticity Problem, Thermal Stresses, Stress due to Concentrated Load, Stress Concentration, Contact Stress.

Failure Criteria

Failure by and Criteria for Yielding and Fracture, Failure Theories: Max. Shearing Stress, Max. Distortion Energy, Octahedral Shearing Stress, Max. Principal Stress, Mohr's, Coulomb-Mohr; Fracture Mechanics, Failure Criteria for Metal Fatigue, Fatigue Life, Impact Load, Dynamic and Thermal Effects.

Torsion of Prismatic Bars

Elementary Theory, General Solution of Torsion Problem, Prandtl'sStress Function and Membrane Analogy, Torsion of Thin-walled Members: Open Cross-section, Multiply Connected, Restrained; Fluid Analogy and Stress Concentration, Curved Circular Bars, Helical Springs. Elastic-Plastic Torsion.

Beams, Plates, and Shells

Beams: Exact and Approximate Solutions, Curved Beams. Beams on Elastic Foundations: Infinite, Semi-infinite, Finite Beams, Beams Supported by equally Spaced Elastic Elements, Finite Difference Solutions. Thin Plates: Basic Assumptions and Relations, Boundary Conditions, Simply Supported Rectangular Plates, Axisymmetrically Loaded Circular Plates, Deflection by Energy Method, Finite Element Solution. Thin Shells: Basic Assumptions, Membrane Action, Shells of Revolution, Cylindrical Shells of General Shape.

(12 hours)

SECTION-B

Numerical Methods

Finite Differences and Equations, Curved Boundaries, Boundary Conditions, Finite Element Method, Properties of a Finite Element, Formulation of the Finite Element Method, Triangular Element, Use of Digital Computers.

Axisymmetrically Loaded Members

Thick-walled Cylinders, Max. Tangential Stress, Failure Theories, Compound Cylinders, Perfectly Plastic Thick-Walled Cylinders. Rotating Disks: Constant and Variable Thickness, Uniform Stress; Elastic-Plastic Stresses in Rotating Disks, Thermal Stresses in Thin Disks and Long Cylinders, Finite Element Solution.

Energy Methods

Work done in Deformation, Theorems: Reciprocity, Castigliano, Crotti-Engesser; Statically Indeterminate Systems, Principles: Virtual work, Minimum Potential Energy; Rayleigh-Ritz Method.

Elastic Stability

Critical Load, Buckling of Column, End Conditions, Critical and Allowable Stress, Initially Curved, Eccentrically Loaded and Secant Formula, Energy Methods, Finite Differences Solution.

Г

(12 hours)

TEXT BOOKS				
S. No.	NAME	AUTHOR(S)	PUBLISHER	
1	Advanced Strength and Applied Elasticity	Ugural and Fenster	Prentice Hall, 2003	
2	Advanced Mechanics of Material	Boresi and Schmidt	Wiley, 1993	
3	Advanced Strength and Applied Stress Analysis	Budynas	McGrawHill, 1999	

Course Code	MME104
Course Title	Rapid Manufacturing
Type of Course	Core
LTP	310
Credits	4
Course Assessment Methods	
End Semester Assessment (University	50
Exam.)	50
Continuous Assessment (Sessional,	
Assignments, Quiz)	

Note for Examiner- The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

SECTION-A

- 1. **Introduction to Rapid Manufacturing:** Definition, Characteristics, Feature based manufacturing, Advantages, Applications
- 2. **Product Design Process:** Product, Product design, Design thinking as the foundation for design process, User analysis, Product research, User interaction with product, Prototyping, Testing and validation
- 3. **Design for Modularity:** Modular and non-modular design, Components and fabrication for modular design products, Benefits of modularity in product design, Modularity approach in product designing, Five elements of modular design
- 4. **Reverse Engineering:** 3 stages of reverse engineering, 6 steps of reverse engineering with examples, Computer integrated manufacturing, 3D measurements and laboratory demonstration

SECTION-B

- 5. **Polymerization and Powder based RM processes:** Polymerization in additive manufacturing, Vat polymerization types, powder bed fusion process, Process optimization, principle and properties, Strength and weakness, Applications
- 6. **Liquid based and Sheet stacking RM processes:** Materials, Process principle and applications, Process optimization

- 7. **Beam Deposition RM processes and materials in RM:** Direct metal laser sintering, SLM, principles and applications, process optimization
- 8. **Post-processing and Costing in RM:** Meaning and need of post processing, Post processing operations/ techniques in additive manufacturing, Product costing, Material selection

TEXT BOOKS				
S.	NAME	AUTHOR(S)	PUBLISHER	
No.				
1	Additive Manufacturing Technologies	l Gibson, D Rosen, B Stucker	Springer	
2	Additive Manufacturing	C.P. Paul , A.N. Jinoop	McGraw Hill	
3	Additive Manufacturing: Applications and Innovations	R. Singh, and JP Davim	CRC Press	
4	3D Printing and Design;	Sabrie Soloman	Khanna Publishing	

Course Code	MME201
Course Title	Continuum Mechanics
Type of Course	Core
LTP	310
Credits	4
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional,	50
Assignments, Quiz)	
Course Prerequisites	Mechanics of Materials, Fluid
	Mechanics, and Vector Calculus
Course Objectives	1. Provide students with necessary
	continuum theory to pursue a formal
	course in advanced solid mechanics
	and fluid mechanics.
	2. Mastering the contents of this course
	will provide the necessary foundation to
	make the student a skilled user of
	advanced design tools that use
	nonlinear kinematics and Finite
	Elements.
	3. Provide understanding with respect
	to restrictions on constitutive equations.
Course Outcomes	1. Ability to tackle modern literature in
	the field of mechanics of materials.
	2. Ability to intelligently use modern
	numerical analysis tools.
	3. Ability to pursue studies in various
	areas of solid and fluid mechanics.

Note for Examiner- The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

SECTION-A

Introduction - What is Continuum Mechanics?

Tensors – Indicial notation, Tensor Algebra, Tensor Calculus, Curvilinear Coordinates

Kinematics of a Continuum - Description of motions of a continuum, Kinematic equation for rigid body motion, Infinitesimal deformation, Infinitesimal rotation tensor, rate of deformation and spin tensor, Conservation of mass, Compatibility conditions for infinitesimal strain and rate of deformation components, Deformation gradient, local rigid body motion, Finite deformation, Polar decomposition theorem, Stretch and Rotation tensors, Right Cauchy-Green, Lagrangian strain tensor, Left Cauchy-Green, Eulerian strain tensor, Change of area and volume due to deformation, Components of deformation tensors in other coordinates, Current configuration as the reference configuration

Stress – Stress Tensor, Symmetry-Principle Of Moment Of Momentum, Equations Of Motion-Principle Of Linear Momentum, Boundary Condition, Piola Kirchhoff Stress Tensors, Equations Of Motion w.r.t. Reference Configuration, Stress Power, Heat Flow, Energy Equation, Entropy Inequality, Integral Formulations of the General Principles of Mechanics.

SECTION-B

Elastic Solid – Isotropic Linear Elastic Solid, Anisotropic Linear Elastic Solid, Isotropic Solid under Large Deformation.

Newtonian Viscous Fluid – Fluids, Compressible and Incompressible Fluids, Newtonian Fluids, Interpretation of λ and μ , Incompressible Newtonian Fluid, Navier-Stokes Equations for Incompressible Fluids, Boundary Conditions, Streamline, Pathline, Steady, Unsteady, Laminar, and Turbulent Flow. Plane Couette Flow, Plane Poiseuille Flow, Hagen-Poiseuille Flow, Dissipation Functions for Newtonian Fluids, Energy Equation For A Newtonian Fluid, Vorticity Vector, Irrotational Flow, Concept Of A Boundary Layer, Compressible Newtonian Fluid, Energy Equation In Terms Of Enthalpy, Acoustic Wave.

Reynolds Transport Theorem and Applications – Green's Theorem, Divergence Theorem, Integrals Over A Control Volume And Integrals Over A Material Volume, The Reynolds Transport Theorem, The Principle Of Conservation Of Mass, The Principle Of Linear Momentum, Moving Frames, A Control Volume Fixed With Respect To A Moving Frame, The Principle Of Moment Of Momentum, The Principle Of Conservation Of Energy, The Entropy Inequality: The Second Law Of Thermodynamics.

Non-Newtonian Fluids – Linear Maxwell Fluid, Relaxation Spectra; Nonlinear Viscoelastic Fluid, Relative Deformation Tensor; Viscometric Flow, Channel Flow, Couette Flow.

TEXT BOOKS				
S. No.	NAME	AUTHOR(S)	PUBLISHER	
1	Continuum Mechanics	Lai, Rubin, and Krempl.	Elsevier, 2010	
RECOMMENDED BOOKS				

1	Continuum Mechanics	Malvern	Pearson, 1966
2.	Mechanics and Thermodynamics of Continua	Gurtin, Fried, Anand	Cambridge, 2010
3.	Continuum Mechanics for Engineers	Mase and Mase	CRC, 1999
4.	Continuum Mechanics – A concise Theory	Chadwick	Dover, 1976
5.	Fundamentals of Continuum Mechanics	Bechtel	Springer, 2014

Course Code	MME202
Course Title	Advanced Manufacturing Processes
Type of Course	Core
LTP	310
Credits	4
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional,	50
Assignments, Quiz)	
Course Prerequisites	Manufacturing Processes, Manufacturing Technology, Mechanical Engineering Drawing
Course Objectives	 1. The objective of the course is to provide the students the knowledge of modern manufacturing processes such as Ultrasonic machining, Abrasive machining processes, Electrochemical machining, Electro discharge machining & their modifications into hybrid processes. 2. This course alsoA introduce them to advanced topics such as Laser beam welding/machining, Electron beam welding/machining & state of art in various research are
Course Outcomes	 Understanding the need and importance of non conventional manufacturing processes Understanding the different non conventional manufacturing processes Understanding the construction, working, input and output process controlling parameters and their effect for various non conventional processes

Note for Examiner- The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

SECTION-A

Introduction:

Classification, Advantages & limitations of non conventional machining, Hybrid Machining, Ultrasonic machining (USM)-Principle of operation, process details, applications and advantages, limitations of USM.

Abrasive and Water Jet Machining:

Basic principle, mechanism of material removal, working principle of Abrasive jet machining (AJM), water jet machining (WJM), merits & demerits, application.

Chemical Machining (CM):

Working principle, process characteristics, procedures, advantages & disadvantages of chemical machining.

SECTION-B

Thermal Metal Removal Processes:

Working principles, Mechanism of material removal, process parameters, advantages & limitations, applications of processes like electric discharge machining(EDM), Electron Beam Machining (EBM), Ion beam machining (IBM), Plasma arc machining (PAM), Laser beam machining(LBM).

Electrochemical Processes:

Fundamentals, details of machining setup, materials and selection of tools, applications, Concept of others processes like ECG, Electrochemical deburring etc.

TEXT BOOKS				
S. No.	NAME	AUTHOR(S)	PUBLISHER	
1	Advanced Machining	V K Jain	Allied	
	Processes,			
2.	Unconventional machining Methods	Benedict	McGraw-Hill	
3	Production Technology	НМТ	ТМН	
4	Non Convectional Machining	M. Adithan	John Wiley	
5.	Non Conventional Machining	P.K.Mishra	Narosa	
6.	Modern machining process	Shan &Pandey	ТМН	

Course Code	MME203
Course Title	Advances In Engineering
	Materials
Type of Course	Core
LTP	310
Credits	4
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional, Assignments,	50
Quiz)	
Course Prerequisites	Material Science
Course Objectives	To learn about characterisation of
	materials and advanced materials
Course Outcomes	1. Understanding of different
	materials characterization
	techniques
	2. Analysis and interpretation of the
	properties of materials
	3. Understanding of scope and
	applications of advanced materials

Note for Examiner- The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

SECTION-A

Selection of materials: Service requirement, Structure-Property correlations and reappraisal of the role of crystal structure and structural defects on properties.

Material Characterization:- Stereographic Projections, X-ray diffraction, crystal structure and phase identification, residual stress measurement and other applications.

Thermal Analysis Techniques: Outline of thermal analysis, technique, description of DTA/DSC/TGA techniques and instrumentation, applications, and case studies

Optical microscopy: light optics, microscope components, possibilities, and limitations.

Scanning Electron Microscopy : Optics and performance of a SEM, Image interpretation, crystallographic information in a SEM, analytical microscopy

Scanning Tunneling Microscopy: Construction and operation, Image interpretation

Transmission Electron Microscopy: Construction and operation of a TEM, Electron Diffraction and image interpretation.

SECTION-B

Synthetic materials: Classifications and structure of polymers, class transition temperature, mechanical properties of polymers. Artificial and synthetic materials. Nano materials: Classification, the structure, methods of their production, their properties and their sphere of applications.

Smart materials: Shape Memory Alloys, Varistors and Intelligent materials for bio-medical uses including poly-acrylates, ABS plastics, polymethacrylates, nylon and teflon. Applications and development of these materials.

TEXT BOOKS				
S. No.	NAME	AUTHOR(S)	PUBLISHER	
1	Callister'sMaterials Science and Engineering	William D. Callister	John Wiley India Pvt. Ltd., 2010	
2.	Engineering Material Technology	James A. Jacobs & Thomas F. Kilduff.	Prentice Hall, 2005.	
3	Foundations of Materials Science and Engineering	William F. Smith.	McGraw Hill.	
4	Materials characterization techniques	Sam Zhang; L Li; Ashok Kumar	CRC Press, 2009	

Course Code	MME204
Course Title	Structural Dynamics
Type of Course	Core
LTP	310
Credits	4
Course Assessment Methods End Semester Assessment (University Exam.) Continuous Assessment (Sessional, Assignments, Quiz)	50 50
Course Prerequisites	No prerequisites
Course Objectives	 To understand basics of structural dynamics To solve governing equations of undamped and damped SDOF
	 systems 3. To develop finite element model of simple mechanical system 4. To evaluate dynamic responses such as natural frequencies, mode-shapes and FRFs
Course Outcomes	 Ability to recognize the fields where structural dynamics knowledge can be applicable Ability to analyze the behavior of different types of SDOF systems under different working conditions Ability to formulate structural dynamic finite element model problem of simple mechanical system Ability to post-process the FE models to predict dynamic responses

Note for Examiner- The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

SECTION-A

Basic concepts:

Introduction to structural dynamics; Modeling of structural components and systems; FE route of structural dynamics and its limitations; Experimental route of structural dynamics and its limitations; Understanding structural dynamics in time domain versus frequency domain. Spring-mass model; Free vibrations of SDOF, 2-DOF and MDOF system; Dynamic matrix equation; Eigenvalues; Eigenvectors; Modeshapes; Orthogonality of normal modes; Damping ratios; Drive point and cross frequency response functions; Receptance, Mobility, Accelerance, Real modes, Complex modes.

SDOF system:

Degrees of freedom; Undamped system; Springs in parallel or in series; Newton's law of motion; Free body diagram; D' Alembert's principle; Solution of differential equation of motion; Frequency and period; Amplitude and motion.Proportional versus non-proportional damping; Equation of motion; Analysis of critically damped system; Analysis of under-damped system; Analysis of over-damped system. Harmonic excitation for undamped and damped systems; Evaluation of damping at resonance; Bandwidth method to evaluate damping; Energy dissipated by viscous damping; Equivalent viscous damping; Response to support motion; Force transmitted to foundation; Seismic instruments; Response of SDOF system to harmonic loading. Nonlinear SDOF model; Integration of the nonlinear equation of motion; Constant acceleration method; Linear acceleration step-by-step method; The Newmark beta method.

SECTION-B

Introduction to finite element method:

Types of finite elements; Types of loading; Element division; Element connectivity; Linear shape functions; Isoparametric formulation of shape functions; Types of shape functions; Development of elemental stiffness matrix; Assembly of global stiffness matrix; Development of elemental body force vector; Development of elemental traction force vector; Assembly of global load vector; Development of elemental mass matrix; Assembly of global mass matrix.

Structural dynamic analysis of beams using MATLAB:

Flexural vibrations of uniform beams; Solution of equation of motion in free vibration; Natural frequencies and mode-shapes for uniform beams with both ends simply supported, both ends free, both ends fixed, one end fixed and other end free, one end fixed and other end simply supported; Orthogonality condition between normal modes.

TEXT BOOKS			
S. No.	NAME	AUTHOR(S)	PUBLISHER
1	Structural Dynamics Theory and Computation	Mario Paz and William Leigh	Kluwer Academic Publisher, 2004
2.	Fundamentals of Structural Dynamics	R. Craig and Andrew Kurdila	John Wiley and Sons, 2006
3	Dynamics of Structures	J. L. Humar	Balkema Publishers, Edition 2002
4	Structural Dynamics for Engineers	Hans Anton Buchholdt	Thomas Telford Publishers, 1997

Course Code	MME301
Course Title	Advanced Machine Design
Type of Course	Core
LTP	310
Credits	4
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional,	50
Assignments, Quiz)	
Course Prerequisites	No prerequisites
Course Objectives	 To study and apply principles of fatigue, surface failure, impact, vibration and thermal aspects in designing the products To study and apply principles of accelerated life testing To study and apply principles of optimization techniques
Course Outcomes	 Ability to design products considering fatigue, surface failure, impact, vibration and thermal aspects Ability to predict expected life and reliability of product through accelerated life testing Ability to apply optimization technique in evaluating the optimal design solution

Note for Examiner- The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

SECTION-A

Introduction:

Importance of machine design in industry; Basic concepts of machine design including types of loading, stress, strain, strength, factor of safety, types of failures, computer-aided-design, stress concentration, statistical nature of mechanical properties of materials, fits, tolerances and surface finish.

Fatigue failure based design:

Stress-life approach; strain-life approach; LEFM approach, Estimated S-N diagrams; Notch sensitivity; Residual stresses; Designing for high cycle fatigue; Designing for fully reversed uni-axial stresses; designing for fluctuating uniaxial stresses, Designing for multiaxial stresses in fatigue.

Surface failure based design:

Surface geometry; mating surfaces; Effect of roughness, velocity, rolling and lubricant on friction; Adhesive wear coefficient; Abrasive wear; Corrosion wear; Surface fatigue; Spherical contact; Cylindrical contact; General contact; Dynamic contact stress, Surface fatigue failure models of dynamic contact.

Impact based design:

Energy methods, longitudinal stress waves in elastic media impact on beams, torsional impact on shafts and longitudinal impacts on helical springs

SECTION-B

Vibration based design:

Methods of dynamic design of machines; Structural dynamic modifications; Application of vibration based design to an industrial case study such as a drilling machine.

Thermal based design:

Effect of short term and long term properties of materials on design; creep and stress relaxation; Elementary analysis of thermal stresses; thermal fatigue based design.

Reliability based design:

Guarantee versus warranty; Accelerated life testing (ALT); Design of ALT plans; Exponential Model and its application; Weibullmodel and its applications.

Optimum design:

Design vector; Design constraints; Constraint surface; Objective function surfaces; Multi-objective optimization using response surface method and its application in machine design.

TEXT BOOKS				
S. No.	NAME	AUTHOR(S)	PUBLISHER	
1	Mechanical Engineering Design	Joseph Edward Shigley& Charles R. Mischke	Mc. Graw Hill (2007)	
2.	Machine Design, An Integrated Approach	Robert L. Norton	Pearson Education (2007)	
3	Design of Machine Members	Vallance and Doughtie	McGraw Hill, New York, 2005	

Course Code	MME353
Course Title	Preliminary Thesis Work
Type of Course	Core
LTP	0-0- <u>20</u>
Credits	10
Course Assessment Methods	
Continuous Assessment	250
Course Prerequisites	Research Methodology, Design of Experiments The student should have taken all required courses. A supervisor must also be assigned before the student can start writing the thesis.
Course Objectives	 Ability to identify Gaps in literature surveys and define the problem. Ability to set objectives and state the methodology to be adopted. Preparing the blueprint of research work to be carried out.
Course Outcomes	 Effectively engage in an independent, sustained critical investigation and evaluation of a chosen relevant research topic. Systematic findings and critical review of appropriate literature by demonstrating the use of adequate research methods and tools. Identify relevant gaps, theory and concepts, relate these to appropriate methodologies and evidence, apply appropriate techniques and draw conclusions. Communicate research concepts and contexts clearly and effectively both in writing and orally.
Course Code	MME451
----------------------------	---
Course Title	Thesis Work
Type of Course	Core
LTP	0-0- <u>28</u>
Credits	14
Course Assessment Methods	
End of Semester Assessment	175
Continuous Assessment	175
Course Prerequisites	Research Methodology, Design of Experiments
Course Objectives	 Skill and ability to conduct research Identification of methodology and technical solution to problem Ensure Dissemination to society
Course Outcomes	 Plan and engage in an independent and sustained critical investigation and evaluation of a chosen research topic relevant to the program. Demonstrate knowledge to create and analyse different technical solutions. Appropriately apply qualitative and/or quantitative evaluation processes to the problem under study. Communicate research concepts and contexts clearly and effectively both in writing and orally.

ELECTIVE-I Courses In Semester 1

Course Code	MME105(a)
Course Title	Quality Control & Reliability
Type of Course	Elective
LTP	310
Credits	4
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional, Assignments,	50
Quiz)	
Course Prerequisite	Industrial Engineering and
	Management
Course Objectives	1.Demonstrate the approaches
	and techniques to assess and
	improve process and/or product
	quality and reliability.
	2.Introduce the principles and
	techniques of Statistical Quality
	Control and their practical uses in
	product and/or process design and
	monitoring
	3.Illustrate the basic concepts and
	techniques of modern reliability
	engineering tools.
Course Outcomes	1. Attain the basic techniques of
	quality improvement, fundamental
	statistics and probability
	2. Use control charts to analyze for
	Improving the process quality.
	3. Describe different sampling
	pidiis 4. Acquire basis knowledge of total
	4. Acquire basic knowledge of lotal
	5 Understand the concents of
	o. Understand the concepts of
	reliability and maintainability

SYLLABUS

Note for Examiner- The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

INTRODUCTION :

SECTION-A

Definition of Quality, Dimensions of Quality, Quality Planning, Quality costs - Analysis

Techniques for Quality Costs, Basic concepts of Total Quality Management, Historical Review, Principles of TQM, Leadership – Concepts, Role of Senior Management, Quality Council, Quality Statements, Strategic Planning, Deming Philosophy, Barriers to TQM Implementation.

STATISTICAL PROCESS CONTROL (SPC): The seven tools of quality – Statistical fundamentals – Measures of central tendency and dispersion – Population and sample – Normal curve – Control charts for variables and attributes – Process capability – Concept of six sigma – New seven management tools.

TQM TOOLS: Benchmarking – Reasons to benchmark – Benchmarking process – Quality Function Deployment (QFD) – House of quality – QFD process – Benefits – Taguchi quality loss function – Total Productive Maintenance (TPM) – Concept – Improvement needs – FMEA – Stages of FMEA.

QUALITY SYSTEMS : Need for ISO 9000 and other quality systems – ISO 9000:2000 quality system – Elements – Implementation of quality system – Documentation – Quality auditing – TS 16949 – ISO 14000 – Concept – Requirements and benefits.

SECTION-B

RELIABILITY

Introduction to reliability, types of failures, definition and factors influencing system effectiveness, various parameters of system effectiveness.

RELIABILITY EVALUATION

Types of system- series, parallel, series parallel, stand by and complex; development of logic diagram, methods of reliability evaluation; cut set and tie set methods, matrix methods event trees and fault trees methods, reliability evaluation using probability distributions, Markov method, frequency and duration method.

RELIABILITY IMPROVEMENT

Techniques of reliability improvement, component redundancy, system redundancy, types of redundancies-series, parallel, series – parallel, standby redundancy.

RELIABILITY TESTING

Life testing, requirements, methods, test planning, data reporting system, data reduction and analysis.

TEXT BOOKS			
S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1	Total Quality	Feigenbaum. A.V.	Mc. Graw Hill
	Management		

2.	Total Quality	Dale H.Besterfield	Pearson Education, Inc. 2003
	Management		
3	Reliability Engineering	A.K. Govil	TATA McGraw-Hill
4.	Reliability Engineering	L.S.Srinath	East West press, 1991

Course Code	MME105(b)
Course Title	Manufacturing Science
Type of Course	Elective
LTP	310
Credits	4
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional, Assignments, Quiz)	50
Course Prerequisites	Manufacturing
	Process/Technology
Course Objectives	Analysis/design/selection of
	manufacturing processes for
	materials
Course Outcomes	1. Analysis of the
	machining/casting process
	2. Understanding and
	design of the manufacturing
	process based on
	requirements
	3. Understanding and
	selection of process for an
	application

Note for Examiner- The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

SECTION-A

Engineering Materials

Applications and Important Properties of ferrous materials-cast iron, steels and alloy steels, non-ferrous materials-Cu, Al and their alloys.New industrial materials and their properties with special emphasis to composites, Selection of materials.

(12 hours)

Metal Machining

Tool Geometry, different system of representation, mechanics of orthogonal and oblique cutting, shear angle relation in orthogonal cutting, shear angle & chip flow direction in oblique cutting, chip control methods, analysis of cutting process like turning, drilling, milling. Temp. Distribution at the tool chip interface

(12 hours)

SECTION-B

Casting Processes

Nucleation and growth in metals and alloys.constitutional supercooling. Columnar equi acquiesced and dendritic structures.Freezing of alloys centre line feeding resistance. Rate of solidification, time of solidification, mechanism of solidifications, rate of solidification, continuous casting process, Riser Design and its placement, defects in casting, inspection of casting process.

Welding:

Introduction, Principle of solid state welding, Heat source, Metal Transfer in Arc Welding, Heat flow characteristics, Gas Metal Reactions, Cooling of fusion weld, weld defects and inspection, Advance welding process, Ultrasonic Welding, Electronic beam welding, Laser beam welding, Explosive Welding, Plasma welding, Development in welding Technology, Some research trends in welding, guality control of weldments.

(12 hours)

(12 hours)

TEXT BOOKS			
S. No.	NAME	AUTHOR(S)	PUBLISHER
1	Manufacturing Science	Ghosh and Malik	EWP
2	Welding Processes and Technology	R.S. Parmar	Khanna Publishers
3	Production Technology		HMT

Course Code	MME105(c)
Course Title	Welding Techniques
Type of Course	Elective
LTP	310
Credits	4
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional, Assignments, Quiz)	50
Course Prerequisites	Manufacturing Processes, Manufacturing Technology, Mech Engg Drawing
Course Objectives	 To understand the advanced welding processes and the process parameters. Acquire knowledge on various advanced welding processes for engineering industry applications. Knowledge on the design of welded joints and the quality control of weldments.
Course Outcomes	1. Understanding the various metal joining processes 2. Understanding and Practice of the different welding techniques 3. Understanding the construction, working, input and output process controlling parameters and their effect for various welding techniques

Note for Examiner- The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

SECTION-A

Introduction

Welding– Definition, industrial importance, applications; welding vs. other fabrication processes; classification of welding and allied processes.

Welding Safety and Hazards

Hazards associated with gas and arc welding processes, protection against electric shock, arc radiations, fumes and dust, compressed gases, fire and explosions.

(12 hours)

Arc Welding & Power Sources

Arc- arc characteristics- arc physics, arc plasma, arc structure, arc stability, arc efficiency; brief introduction to bead geometry and melting rate, mode of metal transfer-short circuit, globular and spray mode of transfer, various factors and forces affecting metal transfer; welding power sources- introduction to transformers, rectifiers, transistors, thyristers, diodes, inverters; basic principle and characteristics of welding transformers, rectifiers, generators and inverters; power source characteristics- static and dynamic volt-ampere characteristics, duty cycle; arc blow- causes and its control.

Shielded Metal Arc Welding (SMAW)

Basic principle and equipment used; welding parameters and their effect on weld bead characteristics; covered electrodes- functions of electrode coating, types of coating and their characteristics, classification and coding of covered electrodes as per IS & AWS standards; advantages, limitations and applications.

(12 hours)

SECTION-B

Gas Metal Arc Welding (GMAW)

Basic principle and equipment used; welding parameters and their effect on weld bead characteristics; shielding gases- types, characteristics and applications; pulsed MIG welding; introduction to flux cored arc welding; advantages, limitations and applications.

Gas Tungsten Arc Welding (GTAW)

Basic principle and equipment used; arc initiation method and arc stability; types of tungsten electrode and their applications; shielding gases and their applications; effect of polarity on weld characteristics, difference between SAME and GTAW power sources, requirement for DC suppressor unit; pulse TIG welding; electrode contamination; advantages, limitations and applications.

Submerged Arc Welding (SAW)

Basic principle and equipment used; welding parameters and their effect on weld bead characteristics; SAW fluxes- classification and their characteristics; coding of flux wire combination as per BIS and AWS; introduction to multi-wire and multi power systems, strip cladding, narrow gap welding; advantages, limitations and applications.

Plasma Arc Welding (PAW)

Basic principle and equipment used; plasma forming and shielding gases; transferred and non-transferred arc modes; micro-plasma welding; advantages, limitations and applications.

Resistance Welding

Basic principle; Brief introduction to spot, seam, projection and flash butt welding; welding variables; heat balance; process capabilities and applications.

(12 hours)

TEXT BOOKS			
S. No.	NAME	AUTHOR(S)	PUBLISHER
1	Modern Arc Welding	S.V.Nadkarni	Oxford & IBH
	Technology		
2	Modern Arc Welding	H.B.Cary	Prentice Hall.
	Technology		
3	Production Technology		НМТ
4	Welding Hand book	Leonard P Connor	Volume I-III, AWS
5	Welding skills and technology	Dave Smith	McGraw Hill

Course Code	MME105(d)
Course Title	Tool and Cutter Design
Type of Course	Elective
LTP	310
Credits	4
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional, Assignments, Quiz)	50
Course Prerequisites	Manufacturing Processes,
	Manufacturing Technology,
	Jigs and Fixture Design
Course Objectives	1. Study of various
	machining processes
	2. Material removal
	methods, input parameters
	during machining
	3. Tool wear mechanism,
	Automation during
	machining
Course Outcomes	1. Understanding the basic
	tools nomenclature and their
	geometry
	2. Design the lathe single
	point cutting tool, milling
	cutter and drilling tools
	3. Calculate the various
	types of stresses in the
	different cutting tools and
	cutters

Note for Examiner- The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

SECTION-A

Introduction

Fundamentals of cutting Tool design, Cutting tools ad their principal elements, tool Geometry, system of nomenclature and their relations, setting for the grinding of various basis cutting tool (Turning, drilling, Milling)

Tool Materials

Development of various tool materials then relative characteristics, Modern trend I tool development, Concept of tool life.

Single point cutting tools, Purpose and principal, types and their characteristics, Design procedures of single point tools, design of various high production tools, design of carbide tools.

(12 hours)

SECTION-B

Tool & Design

Form tools, purpose and types, design procedure and sharpening

Drills

Purpose and principal types ad their construction and Geometry, development I the shape of twist drills.

Milling Cutters

Purpose ad type and their construction procedure of profile sharpened and form relieved cutter, design of hobs.

Broaches

Purpose and types, design features of various broaches.

(12 hours)

TEXT BOOKS			
S. No.	NAME	AUTHOR(S)	PUBLISHER
1	Tool design	Donaldson	ТМН
2	Principal of machine Tools	Sen &	New central Book
		Bhattacharya	Agency
3	Principal of metal Cutting	Shaw	Oxford

Course Code	MME105(e)
Course Title	Condition Monitoring and Fault Diagnosis
Type of Course	Elective
LTP	310
Credits	4
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional, Assignments, Quiz)	50
Course Prerequisites	Manufacturing Processes, Manufacturing Technology, CAD/CAM, Calculus
Course Objectives	 Provide an overview of the fundamental principles of maintenance and condition monitoring techniques Acquire knowledge of data acquisition and signal processing techniques Explain about diagnosis of machinery faults and methods to correct faults
Course Outcomes	 Understanding the basic construction and working of various machine tools Understand the various condition monitoring techniques and their use Understand the various fault diagnosis techniques and their use in different machine tools

Note for Examiner- The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

SECTION-A

Introduction

Introduction to maintenance techniques, maintenance Strategies, Classifications (Plant maintenance, Running maintenance, Shut Down, Emergency corrective, curative, Breakdown, preventive predictive, Reliability, Total productive Maintenance, Guidelines for selecting best strategy.

Fault Tree analysis, Methodology for tree development, Family tree definitions in symbols. Fault Tree construction, fault tree simplification, fault tree evaluation, common cause failure, Probability evaluation in fault trees, Simulation approach. (12 hours)

SECTION-B

Analysis and Diagnosis

Wear analysis through thermograph and Ferrography

Various Techniques of condition Monitoring, condition based Maintenance, visual monitoring, performance monitoring, vibration monitoring, war debris monitoring, Decision elements in condition based maintenance detection, diagnosis, Prescription, Benefits of condition maintenance. Application of diagnostic maintenance to Industrial Machine & plants (12 hours)

TEXT BOOKS			
S. No.	NAME	AUTHOR(S)	PUBLISHER
1	Diagnostic maintenance & condition Monitoring	Kelly	A.Butterworth & Co
2	Maintenance and spare parts management	Krishan G	Prentice Hall,1991
3	MaintenanceEngg. handbook	Higgins	McGraw Hill
4	Engg. Maintenance Management	Niebel	Routledge

Course Code	MME105(f)
Course Title	Advanced Heat Transfer
Type of Course	Elective
LT P	310
Credits	4
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional, Assignments,	50
Quiz)	
Course Prerequisites	Thermodynamics, Heat and Mass Transfer
Course Objectives	 1.To provide fundamental and advanced knowledge of unsteady state in multi dimensional heat transfer in condition with derivations 2. To Analyse Radiation heat transfer to calculate radiation exchange between surfaces and gas radiation. 3. To provide knowledge of convection heat transfer to understand convection phenomenon in forced flow and natural flow. 4.To provide understanding the laws of mass diffusion for steady and unsteady states in common geometries
Course Outcomes	Student will be able to 1.Explain two dimensional heat conduction equation for steady and unsteady heat transfer with their solutions 2.Explain radiation properties and apply radiation networks to calculate radiation exchange between surfaces, and gas radiation. 3.Analyse forced convection heat transfer and free convection heat transfer during internal flow and external flow. 4.Explain the laws of mass diffusion for steady and unsteady states in common geometries.

Note for Examiner- The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

SECTION-A

Review

Review of the basic laws of conductions, radiation and convection.

Conduction

One dimensional steady state conduction with variable thermal conductivity and with internal distributed heat source, local heat source in non-adiabatic plate. Extended surfaces-review, fins of non-uniform cross section, performance of fins (fin efficiency, thermal resistance of a fin, total surface efficiency), design consideration. Two dimensional steady and unsteady state conduction, semi-infinite and finite flat plates; temperature field in finite cylinders and infinite semi-cylinders, numerical method, graphical method. Unsteady state conduction; sudden changes in the surface temperatures of infinite plate, cylinders and spheres; solutions using Groeber's and Heisler's charts for plates, cylinders and spheres suddenly immersed in fluids. (9 hrs)

Radiation

Introduction, properties and definitions, review of radiation principles (Planck's law, Kirchoff's law, Stefan Boltzman law, Lambert's cosine law). Radiation through non-absorbing media; Hottel's method of successive reflections; Radiation through absorbing media; logarithmic decrement of radiation; apparent absorptivity of simple shaped gas bodies; net heat exchange between surfaces separated by absorbing medium; radiation of luminous gas flames. (9)

Convection

Heat transfer in laminar flow; free convection between parallel plates; forced internal flow through circular tubes; fully developed flow; velocity and thermal entry lengths; solutions with constant wall temperature and with constant heat flux; forced external flow over a flat plate; the two dimensional velocity and temperature boundary layer equations; Karman Pohlhousen approximation integral method. Heat transfer in turbulent flow; eddy heat diffusivity; Reynold's analogy between skin friction and heat transfer; Von Karman integral equations, analogy between momentum and heat transfer, flow across cylinders, spheres and other bluff shapes and packed beds. (8 hrs)

Mass Transfer

Introduction, concentration, velocities and fluxes, Fick's law of diffusion, steady state diffusion in common geometries, equimolal counter-diffusion in gases, steady state diffusion in liquids, transient mass diffusion in common geometries, mass transfer coefficient, convective mass transfer (5 hrs)

TEXT BOOKS					
S. No.	NAME	AUTHOR(S)	PUBLISHER		
1	Analysis of Heat and Mass	Eckert and Drake	McGraw Hill		
	Transfer				
2.	Fundamentals of Heat Transfer	Grober, Erk and Grigul	McGraw Hill		
3	Heat Transfer	Holman J.P.	McGraw Hill		
4	Conduction Heat Transfer	Schneider	Addison Wesley		
5	Thermal Radiation	Siegel and Howel	McGraw Hill		
6.	Heat, Mass and Momentum	Rohsenow and Choi	Prentice Hall		

Course Code	MME105(g)
Course Title	Gas Dynamics
Type of Course	Elective
LTP	310
Credits	4
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional, Assignments, Quiz)	50
Course Prerequisites	Fluid Dynamics,
	Thermodynamics, Basic
	Numerical Techniques.
Course Objectives	1. To provide fundamental
	knowledge in Gas dynamic
	concepts and to analyze
	compressible flow through
	constant and variable area
	ducts.
	2. To analyze propulsive
	systems.
Course Outcomes	1. Apply the governing
	equation to one dimensional
	compressible flow through a
	variable area duct.
	2. Derive the conditions for
	the change in pressure,
	density and temperature for
	flow through a normal
	shock.
	3. Analyze Prandtl-Meyer,
	Fanno and Rayleigh flows.
	4. Interpret the operating
	principle of Propulsive
	systems, their working and
	application.

Note for Examiner- The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

SECTION-A

Elementary Principles and introduction to compressible flow

Introduction, units, thermodynamics concepts for control mass analysis, flow dimensionality and average velocity, comment on entropy, pressure energy

equation. The stagnation concept, stagnation pressure-energy equation, momentum equation.

Introduction, Objectives, speed of propagation of pressure front, Mach Number, sonic velocity, field due to a moving source of disturbance, Mach cone ,Mach angle, equation for a perfect gas in terms of Mach number, h. s.& t. s. diagrams .

Varying area adiabatic flow

Introduction, adiabatic flow with and without losses, the reference concept, isentropic tables, convergent & divergent nozzles, diffuser performance, frictional effects on nozzle flow problems.

Standing normal waves

Introduction, shock analysis-general fluid, working equations for perfect gas, normal-shocks

tables, shocks in nozzles, supersonic wind tunnel operation, thermodynamic directions of a

normal shock, rankine hugoniot relation, strength of shock, operation of nozzle (12 hours)

SECTION-B

Moving and oblique shocks, Prandtl-Meyer flow

Introduction, normal shocks tangential velocity superposition -oblique shocks, oblique-shocks, analysis, oblique-shock tables and charge, boundary conditions of flow direction, boundary condition of pressure equilibrium, introduction to Prandtl Meyer flow, analysis of Prandtl Meyer flow, Prandtl Meyer function.

Fanno and Rayleigh flows

Introduction, analysis for general fluid, working equations for a perfect gas, reference state and fanno tables, application, correlation with shocks, friction chocking. Analysis for a general fluid, working equations for a perfect gas reference state and Rayleigh tables, applications, correlation with shocks, thermal choking due to heating.

Propulsion Systems

Introduction, Brayton cycle, propulsion engines, thrust power and efficiency, thrust Consideration, power consideration, and efficiency consideration, open Brayton cycle for propulsion systems, turbojet, turbo propulsion, ram jet, pulse jet. (12 hours)

TEXT BOOKS					
S. No.	NAME	AUTHOR(S)	PUBLISHER		
1	Fundamentals of Gas Dynamics	Yaha, S.M	TMI-I, India		
2	Fluid Mechanics	A.K. Mohanty	Prentice Hall of India		
3	Fundamentals of Fluid Mechanics	Yuan, S.W	Prentice Hall of India.		

4	Fundamentals of Gas Dynamics	Robert D. Zucker	Met tire Publication
5	Gas Dynamics	E. Radha Krishnan	Prentice Hall of India

Course Code	MME105(h)
Course Title	Introduction to Modern
	Fortran
Type of Course	Elective
LTP	310
Credits	4
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional, Assignments,	50
Quiz)	
Course Prerequisites	Introductory Programming.
	familiarity with Linux
	programming environment
Course Objectives	1. Students should both pick up
	the basics of the Fortran
	language and the techniques of
	programming.
	2. Students should learn top
	down design technique before
	implementing the code.
	3. Students will learn to
	thoroughly unit test separately
	implemented individual logical
	units.
Course Outcomes	1. Students should be able to
	use the Fortran language in
	their research and other
	practical projects.
	2. Students should be able to
	write maintainable programs

Note for Examiner- The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

SECTION-A

Introduction to Computers and The Fortran Language: The Computer * Data Representation in a Computer * Computer Languages * The History of the Fortran Language * The Evolution of Fortran

Basic Elements of Fortran: The Fortran Character Set * The Structure of a Fortran Statement *

The Structure of a Fortran Program * Constants and Variables * Assignment Statements and Arithmetic Calculations * Intrinsic Functions * List-Directed Input and Output Statements * Initialization of Variables * The IMPLICIT NONE Statement * Debugging Fortran Programs

* Alternate KINDS of the REAL, INTEGER, and CHARACTER Data RType * COMPLEX Data Type.

Program Design and Branching Structures: Introduction to Top-Down Design Techniques * Use of Pseudocode and Flowcharts * Logical Constants, Variables, and Operators * Control Constructs: Branches.

Loops: Control Constructs: Loops.

Characters: Character Assignments and Character Manipulations * Character comparison operations * Intrinsic Character Functions * Passing Character Variables to Subroutines and Functions * Variable-Length Character Functions * Internal Files

I/O Concepts: Formats and Formatted WRITE Statements * Output Devices, Control Characters in Printer Output * Format Descriptors * Formatted READ Statements * An Introduction to Files and File Processing * Namelist I/O * Unformatted files * Direct Access Files * Stream Access Mode * Non Default I/O for derived types (12 hours)

SECTION-B

Arrays: Declaring Arrays * Using Array Elements in Fortran Statements * Using Whole Arrays and Array Subsets in Fortran Statements * Input and Output * Multidimensional Arrays * Using Intrinsic Functions with Arrays * Masked Array assignment : the WHERE construct * FORALL construct * Allocatable Arrays

Procedures: Subroutines * Sharing Data Using Modules * Module Procedures * Fortran Functions * Passing Procedures as Arguments to Other Procedures. * Passing Multidimensional Arrays to Subroutines and Functions * The SAVE Attribute and Statement * Allocatable Arrays in Procedures * Automatic Arrays in Procedures * Allocatable Arrays as Dummy Arguments in Procedures* Pure and Elemental Procedures * Internal Procedures * Submodules.

Derived Data Types: Derived Data Types * Working with Derived Data Types * Input and Output of Derived Data Types * Declaring Derived Data Types in Modules * Returning Derived Types from Functions * Dynamic Allocation of Derived Data Types * Parameterized Derived Data Types * Type Extension * Type-Bound Procedures * The ASSOCIATE Construct

Pointers and Dynamic Data Structures: Pointers and Targets

* Using Pointers in Assignment Statements * Using Pointers with Arrays * Dynamic Memory Allocation with Pointers *Using Pointers as Components of Derived Data Types * Arrays of Pointers *Using Pointers in Procedures * Procedure Pointers **Object-Oriented Programming in Fortran:** An Introduction to Object-Oriented Programming

* The Structure of a Fortran Class * The CLASS Keyword * Implementing Classes and Objects in Fortran * Categories of Methods * Controlling Access to Class Members * Finalizers * Inheritance and Polymorphism * Abstract Classes.

Coarrays and Parallel Processing: Parallel Processing in Coarray Fortran * Coarrays * Synchronization between Images *Allocatable Coarrays and Derived Data Types *Passing Coarrays to Procedures * Critical Sections * The Perils of Parallel Programming. (12 hours)

TEXT	TEXT BOOKS					
S.	NAME	AUTHOR(S)	PUBLISHER			
No.						
1	Fortran for Scientists and Engineers	Chapman	McGraw-Hill			
2	Modern Fortran Explained	Metcalf	Oxford			
3	Guide to Fortran Programming	Brainerd	Springer			
4	Introduction to Programming with Fortran	Chivers	Springer			

Course Code	MME105(i)
Course Title	Industrial Tribology
Type of Course	Elective
LTP	310
Credits	4
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional, Assignments,	50
Quiz)	
Course Prerequisites	Engineering Mechanics, Materials Science and Engineering
Course Objectives	 Basic objective is to deal with the fundamentals of friction, wear and lubrication. Subject is useful in understanding the nature of surfaces of engineering materials. Course is useful in understanding the various tribological applications.
Course Outcomes	 Understanding and importance of Tribological Phenomenon. Understand the concept of Wear and friction Mechanism. Determine the application of Lubricants and Mechanical Elements.

Note for Examiner- The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

SECTION-A

Introduction

Definition and Scope of tribology, Contact of solids, nature of surfaces, surface topography, surface interactions and characterization, micro and nanotribology, surface roughness measurement techniques.

Friction

Types, laws, modern theories, dry sliding friction, temperature of sliding surface, Mechanism of rolling friction, friction instabilities, measurement of friction.

Wear

Classification, theories of adhesive, abrasive, surface fatigue and corrosives wear, erosive, cavitation and fretting wear, wear models, wear of miscellaneous machine components such as gears, plain bearings and rolling element bearings, ASTM standards for wear measurement, wear resistant materials, wear resistant components, Study of abrasion in grinding, lapping and honing.

(12 hours)

SECTION-B

Lubrication Theories

Lubrication regimes: hydrodynamic lubrication, hydrostatic lubrication, elastohydrodynamic lubrication, boundary lubrication, squeeze films, turbulent lubrication. Reynold's equation, Pressure distribution, load carrying capacity, friction forces in oil film and co-efficient of friction in journal bearing.

Bearing Design

Clearance in journal bearing, minimum film thickness, Sommerfeld Number. Oil grooves and flow of oil in axial and circumferential grooves, cavitation and turbulence in oil bearing. Heat generation and cooling of bearing. Design of air bearing and other gas bearings.

Applications

Application of tribology in manufacturing processes, Metal machining, Metal cutting, Tool wear, Action of lubricants, Friction welding, Extrusion process

(12 hours)

TEXT BOOKS					
S. No.	NAME	AUTHOR(S)	PUBLISHER		
1	Basic Lubrication Theory	A Comeron	Ellis Horwood		
2	Friction Wear & Lubrication	Kenneth C.Ludema	CRC Press		
3	Engineering Tribology	J.A.Williams	Cambridge		
4	Fundamentals of Tribology	Basu, Sengupta &Ahuja	World Scientific		
5	Engineering Tribology	Stachowiak & Bachelor	Elsevier		

Course Code MEC 105(j)				
Course	Course Title Design Of Biomedical Devices And Systems		d Systems	
Type of Course Elective				
LTP			310	
Credits	6		4	
Contin	uous Assessment		50 marks	
Course	Prerequisites		Machine design, solid mechanics, so	olid modelling, FEA
Course	Objectives	1. Ir	ntroduce design aspects in biomedi	cal devices to the
		stude	ents	
		2. Ec	ducate students on clinical trials	
		3. Fa	amiliarize students with variants in	biomedical devices
0	0	base	a on medical specialities	lala of doutions and
Course	Outcomes	1. At	bility to design medical devices in the	ids of dentistry and
		Surge	ery valuate design aspects related to mar	ufacturo implante
		2. LV	adeling of hone structures	
		<u>J. IVI</u>	Svilabus	
	S.No		Topics	Lectures
			PART A	
1	Principles of design	n in	medical devices; Design Process;	7
classification rules of devices				
2	Implementation of a	desig	n procedures; develop design and	8
	product specification	ns, a	ipplications of devices in dentisity,	
3	Material selection:	200	lications of devices in surgical	5
procedures; case studies			5	
PART B				
4	Quality in Design:	; De	sign Realization; Finite Element	8
modelling in bones and implants		nplants		
5 Manufacturing of devices; Rapid prototyping and milling 7 technologies			7	
6	Validation and ver	rificat	ion procedures; Various aspects	7
	involved in ethical a	pprov	vals and clinical trials Labelling and	
	instructions for use			
Recommended books				
S.NO.	NAME		AUTHOR(S)	PUBLISHER
Medical Device				
1 Design			Peter J. Ogrodnik	Academic Press
Design of biomedical		al	Paul H. Hing ; Richard C Fries;	
2 devices and systems Arthur T Johns		Arthur T Johnson	CRC Press	
	Introduction to			
3 biomedical Laurence J Street		CRC Press		

	engineering		
	Sample Size		
	calculations and		
4	clinical research	Chow; Shao; Wang; Lokhnygina	CRC Press

ELECTIVE-II

Courses In Semester 2

Course Code	MME205(a)
Course Title	Fluid Dynamics
Type of Course	Elective
LTP	310
Credits	4
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional, Assignments,	50
Quiz)	
Course Prerequisites	Fluid Mechanics
Course Objectives	 Explain the physical properties of a fluid and the consequence of such properties on fluid flow. State the conservation principles of mass, linear momentum, and energy for fluid flow. Apply the basic applied-mathematical tools that support fluid dynamics. Create models of inviscid, steady fluid flow over simple profiles and shapes. Determine the basic forces and moments acting on simple profiles and shapes in an inviscid, steady fluid flow
Course Outcomes	 Classify and exploit fluids based on the physical properties of a fluid. Apply correctly the conservation principles of mass, linear momentum, and energy to fluid flow systems with emphasis on aerodynamics. Demonstrate the ability to model correctly inviscid, steady fluid flow over simple aerodynamic profiles and shapes.

4. Compute the lift, drag, and moments acting on simple
aerodynamic profiles and
shapes in inviscid, steady
fluid flows

Note for Examiner- The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

SECTION-A

Introduction & overview of Fluid Dynamics, units and basic flow concepts.Continuums, velocity fields, viscosity, classifications of fluids.Conduction Kinematics of Fluid in motion, Equations of Motion of inviscid fluid, One-dimensional inviscid incompressible flow (Bornoulli's equations and its applications). Navier-Stokes' equations. Potential flow theory and transformation. Flow around bodies, cylinders and aerofoil. Transformation of circle into aerofoil. Prediction of velocity and pressure distribution, boundary layer problems, laminar and turbulent boundary layers, separation criterion.

SECTION-B

Motion in two dimensions, sources and sinks, General theory of irrotational motion, Motion of cylinders.General differential equations of continuity, momentum and energy applied to compressible inviscid fluids, Sonic Velocity, Mach number and propagation of disturbance in a fluid flow. Isentropic flow and stagnation properties. Flow through nozzles and diffusers, Fanno, Reyleigh and isothermal flows through pipes.Dynamical Similarity, Inspection Analysis and Dimensional Analysis, Laminar flow of viscous incompressible fluids, Theory of Very Slow Motion, Boundary layer theory. Thermal Boundary Layers, Thermal Boundary Layer.

TEXT BOOKS				
S. No.	NAME	AUTHOR(S)	PUBLISHER	
1	Fluid Dynamics	M. D. Raisinghania,	S. Chand	
2.	Compressible Fluid Flow	Patrick Oosthuizen		
3	Fundamental of Compressible Flow	S.M. Yahya		
4	An Introduction to Fluid Dynamics,	Batchelor G K,	Cambridge (2007)	

Course Code	MME205(b)	
Course Title	Experimental Stress Analysis	
Type of Course	Elective	
LTP	310	
Credits	4	
Course Assessment Methods		
End Semester Assessment (University Exam.)	50	
Continuous Assessment (Sessional, Assignments, Quiz)	50	
Course Prerequisites	Mechanics of Materials, Advanced Mechanics of Materials	
Course Objectives	 Students learn to apply modern experimental stress analysis techniques to measure strains and stresses in engineering components and structures. The course includes strain gage measurements and analysis, photoelasticity, and stress analysis. Ability to understand the role of Experimental Stress Analysis in supporting Analytical and Numerical techniques 	
Course Outcomes	 Students will demonstrate a basic understanding of experimental methods commonly used in experimental solid mechanics. Students will demonstrate the ability to complete a detailed laboratory report and present their findings in a structured, logical manner. Students will demonstrate the ability to analyze experimental data and develop appropriate, logical conclusions based on comparisons to theoretical results and other experimental evidence. 	

Note for Examiner- The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

PART-A

Stress – Stress at a point, Stress Equations of Equilibrium, Stress Transformation, Principal Stresses, Maximum Shear Stress, 2D State of Stress, Special states of Stress. **Strain and Stress-Strain Relationships** – Definition of Displacement and Strain, Strain Transformation, Principal Strains, Compatibility, Dilatation, Stress-Strain Relations, 2D Strain Transformation and Stress-Strain Relations.

Plane Elasticity – Field Equations, Plane Stress, Plane Strain, Airy Stress Function: Cartesian and Polar Coordinates, Problems: Circular Cylinder subject to internal and external Pressure, Thin infinite plate with circular hole under Tensile Load

Elementary Fracture Mechanics – Stress due to Elliptical hole in Uniformly Loaded Plate, Westergaard Stress Funtion, Stress Intensity Factor for select Geometries, Three modes of Loading, Crack-tip Plasticity, Equations for region adjacent to crack-tip, shaper of plastic zone, Energy approach, Criteria for Crack Instability, Fracture Control.

Introduction to Strain Measurement – Definition of strain and its relation to experimental determination, Properties of Strain-gage systems, Types of Strain-gages, Semiconductor Strain-gages, Grid Method of Strain Analysis.

Electrical-Resistance Strain-gages – Strain Sensitivity in Metallic Alloys, Gage construction, Strain-gage adhesives and mounting methods, Gage sensitivities and Gage factor, Performance characteristics of Foil Strain-gages, Environmental Effects.

Strain-gage Circuits – Potentiometer and its application to Strain Measurement, Wheatstone Bridge, Constant-current circuits, Calibrating Strain-gage circuits, Effect of lead wires, switches, and slip rings, Electrical noise, Transducer applications.

Recording Instruments – Static recording and data logging, Digital processing of Analog signals, Dynamic recording of very low/intermediate/high/very high frequencies, digital conversion rates and frequency response, telemetry systems.

Strain Analysis Methods – Three-element rectangular rosette, corrections for transverse strain effects, stress gage, torque gage, stress intensity factor gage, determine mixed mode stress intensity factors, over deterministic methods of strain analysis, residual stress determination.

PART-B

Basic Optics – Nature of Light, Wave Theory of Light, Reflection and Refraction, Image formation by Lenses and Mirrors, Optical Diffraction and Interference, Optical instruments: Polariscope, Interferometer, Shadow Caustics.

Moiré Methods – Moiré Fringes produced by Mechanical Interference, Moiré Fringe Analysis: Geometrical, and Displacement-Field approach, Out-of-plane displacement and slope measurements, Sharpening and multiplication of Moiré Fringes, Experimental procedures and techniques, Moiré Interferometer.

Theory of Photoelasticity - Stress-optics Law, Relative retardation, Effects of stressed

model in: Plane Polariscope, Circular Polariscope (Dark Field, Arbitrary Analyzer position, Tardy Compensation), Photoelastic Photography, Fringe Multiplication with Partial Mirrors.

Applied Photoelasticity 2D and 3D Stress Analysis – 2D Photoelastic Stress Analysis, Materials for 2D Photoelasticity, Properties of commonly applied Photoelastic materials, 3D Photoelasticity Stress Freezing, Materials for 3D Photoelasticity, Slicing the model and interpretation of Fringe Patterns, Effective Stresses, Shear-Difference method in 3D, Application of Frozen Stress method.

Optical Methods for Determining Fracture Parameters – Irwin's method to determine K_1 from isochromatic fringe patterns, Modification of Irwin's 2-Parameter Method, Higher Parameter Methods, Determining K_1 : from isopachic and Moiré fringe patterns, Methods for determining K_1 in 3D bodies, Mixed mode stress intensity factors K_1 and K_{11} , Birefringent coatings in fracture mechanics.

Photoelastic Coatings and Brittle Coatings – Coating Stresses, Birefringent Coatings, Stress-optic and Strain-optic relations for coatings, Coating Sensitivity, Coating Materials, Bonding the Coatings, Effect of Coating Thickness, Fringe-Order Determination of Coatings, Brittle Coatings, Test procedures for Resin-based coatings, Analysis of Brittle coating data.

Books Suggested:

Experimental Stress Analysis, 3/e Advanced Strength and Applied Elasticity Dally and Riley, McGrawHill, 1991 Budynas, McGrawHill, 1999

Course Code	MME205(c)
Course Title	Mechanical Behavior of
	Materials
Type of Course	Elective
	310
Credits	4
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional, Assignments,	50
Quiz)	
Course Prereguisites	Mechanics of Materials
Course Objectives	1 How atomic bonding and
	microstructure affect the
	properties of materials
	2. How processing and
	composition affect the
	microstructures of materials
	3. Mechanical properties of
	metals, polymers, ceramics, and
	composites How to determine the
	strength of engineering
	components
	4. How to determine the life of
	engineering components
	5. How to select materials and
	use them in the design of
	engineering components
Course Outcomes	1. Ability to co-relate/understand
	Elastic and Plastic Behaviour of
	different materials/Metals and
	correlate it to crystal structure
	and imperfection.
	2. Ability to understand
	strengthening Mechanisms of
	different metals and also gain
	good insight into fracture
	mechanics of materials and
	predict failure based on
	experimental observations of a
	sample.
	3. Ability to predict/understand
	Creep and Fatigue phenomenon
	of Engineering Materials.

Note for Examiner- The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

SECTION-A

1. Overview of Mechanical Behavior: Elastic deformation, permanent deformation, Fracture.

2. Elastic Behavior: Range of elastic Moduli, Elastic properties, basis for linear elasticity, anisotropic linear elasticity, rubber elasticity, polymer elasticity and viscoelasticity, damping.

3. Plastic Behavior: *Dislocations* Yield strength of perfect crystal, Edge dislocation, screw and mixed dislocation, twinning, properties of dislocations, dislocation geometry and crystal structure, intersection of moving dislocations, dislocation density and macroscopic stress. *Plastic Deformation in Single and Polycrystalline Materials* initiation of plastic flow in single crystal, stress-strain behavior of single crystals, plastic flow in polycrystals, plastic flow behavior and material class, geometrically necessary dislocations. *Strengthening of Crystalline Materials* Strengthening, work hardening, boundary strengthening, solid-solution strengthening, particle hardening, strain gradient hardening, deformation of two phase aggregates, case studies on strength, microstructure, and processing *High Temperature Deformation of Crystalline Materials* aspect in Creep design, engineering aspects of creep behavior, superplasticity, hot working of metals *Deformation of Non-crystalline Materials* Crystalline vs. non-crystalline structure, viscosity, deformation of - inorganic glasses, metallic glasses, polymeric materials

SECTION-B

4. Composite Materials: Reinforcement – basic principle, with particles, with aligned continuous and discontinuous fibers, fiber orientation effect, statistical failure of composites, strain-rate effects, microscopic effects, reinforcement of brittle matrices, modern composite materials.

5. Fracture Mechanics: Theoretical strength of a solid, crack-initiated fracture, fracture mechanics, fracture toughness and material class, impact test, fracture of brittle nonmetallic. *Toughening* in metals, ceramics, composites, polymers, *Physics of Fracture* Types of Low-Temperature Tensile Fracture, Relation among bonding, crystal structure and fracture, Mode II and Mode III brittle fracture, ductile fracture, High Temperature Fracture, modes and mechanism, intergranular creep fracture, Design and materials considerations, failure in superplastic materials, *Fatigue Fracture* characteristics, resistance, fatigue crack growth, design against fatigue, cyclic stress-strain behavior, creep-fatigue interaction, polymeric fatigue, fatigue in composites.

6. Embrittlement: Metal embrittlement, Stress-corrosion cracking, hydrogen embrittlement, impurity-atom embrittlement, radiation damage, embrittlement of inorganic glasses and ceramics, polymer embrittlement

7. Cellular Solids: Geometries and Densities of Cellular solids, Compressive behavior of Cellular Solids, Energy absorption in Cellular solids, Sandwich panels.

Books

Title Author Publisher Mechanical Behavior of Materials Courtney McGraw-HIII George E. Dieter McGraw-Hill Physical Metallurgy Mechanical Behavior of Materials Norman Dowling Pearson Materials Science and Engineering William D. Callister Wiley Advanced Mechanics of MaterialsBoresi Wlley

Course Code	MMF205(d)
Course Title	Composite Materials
Type of Course	Flective
	310
Credits	4
Course Assessment Methods	•
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional, Assignments,	50
Quiz)	
Course Prerequisites	Mechanics of Materials,
•	Manufacturing processes
Course Objectives	1.To understand multiple material
	combinations
	2.To educate students about
	fabrication techniques for
	composites
	3. To familiarize students on usage
	of composite materials in
	engineering applications
	4. To introduce students regarding
	various mechanical characterization
	techniques
Course Outcomes	1. Understanding of types of
	composite materials
	2. Analyzing characterization
	techniques for and comparing
	various composite materials
	3. Learning mechanical properties of
	composite materials

Note for Examiner- The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

SECTION-A

Basics of Materials

Processing of metal, ceramic, and polymer composites, laminates; analysis of residual stresses. Advanced analysis of composite materials; anisotropic elasticity.

Fabrication Methods of Polymer Composites

Liquid resin impregnated routes, pressurized consolidation of resin pre-pegs, consolidation of resin molding compounds, injection molding of thermoplastics, hot press molding of thermoplastics, laminations, honeycomb.

Fabrication of Ceramic Composites

Powder based routes, reactive processing, layered ceramic composites, carbon/carbon composites.

(12 hours)

SECTION-B

Characterization Techniques

Visual characterization techniques-electron microscopy, atomic force microscopy, Raman, FTIR techniques

Mechanical Characterization Techniques

Micro and nano level static and dynamic mechanical properties evaluation techniques to study hardness, stress, strain, modulus etc.

Introduction to Simulation

Simulator technology, Applications, Software Packages.

(12 hours)

TEXT BOOKS				
S. No.	NAME	AUTHOR(S)	PUBLISHER	
1	Experimental Mechanics of Fiber Reinforced Composite Materials	J.M. Whitney, I.M. Daniel and R. Byron Pipes	Wiley	
2	The Behavior of Structures Composed of Composite Materials	Martinus-Nijhoff	Springer	
3	Mechanical Behavior of Engineering Materials	Roesler, Harders, Baeker	Springer	
Course Code	MME205(e)			
--	----------------------------------			
Course Title	Model Updating			
Type of Course	Elective			
LTP	310			
Credits	4			
Course Assessment Methods				
End Semester Assessment (University Exam.)	50			
Continuous Assessment (Sessional, Assignments,	50			
Quiz)				
Course Prerequisites	No prerequisites			
Course Objectives	1. To study and apply the			
	principle of size compatibility			
	technique			
	2. To compare experimental			
	versus finite element results			
	3. To apply model updating			
	technique for reducing errors of			
	finite element model			
Course Outcomes	1. Ability to reduce or expand			
	the size of a model by using			
	size compatibility techniques			
	2. Ability to compare the			
	experimental versus analytical			
	dynamic responses			
	3. Ability to update the finite			
	element model to improve its			
	prediction accuracy			

Note for Examiner- The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

SECTION-A

Overview:Introduction and industrial relevance of model updating; Overview of applications of model updating; Introduction to direct and iterative methods of model updating; Pros and cons of direct and iterative methods of model updating; simulated experiments method.

Size Compatibility Techniques:Needs and requirements of size compatibility techniques; Guyan static reduction method; Guyan dynamic reduction method; Improved reduced system (IRS); System equivalent reduction expansion process

(SEREP); Condensed versus reduced models; Expansion using mass and stiffness matrices.

Correlation Techniques:Needs and requirements of correlation techniques; Graphical comparison of eigenvalues; Overlay techniques of comparison of FRFs; Comparison of modeshapes; Modal scale factor and its limitations; Modal assurance criteria and its 3-D Plots; Normalized cross orthogonality and its 3-D Plots; Coordinate MAC and its Uses.

Direct Methods of Model Updating: Technical background of direct methods of model updating; Method of Baruch and Bar-Itzhack and its limitations; Method of Berman and its limitations; Method of Berman and Nagy and its limitations; Overall advantages and disadvantages of direct methods; Applications of direct methods of model updating.

SECTION-B

Response function method: Response function method, RFM using damping identification, RFM using complex parameters, Normal response function method; Application of each method to a cantilever beam structure.

Inverse eigen-sensitivity method:Inverseeigen-sensitivity method and its application to a cantilever beam structure. Comparison of inverse eigen-sensitivity method with the response function method.

Response surface method:Generation of experimental design matrix using central composite design method; development of response surfaces using regression analysis; model updating of a cantilever beam structure using response surface method.

Other methods of model updating:Introduction to model updating using based excitation; neural network based model updating; Genetic algorithm based model updating; simulated annealing based model updating; Particle-swarm-optimization based model updating.

TEXT BOOKS			
S. No.	NAME	AUTHOR(S)	PUBLISHER
1	Finite Element Model Updating	M.I. Friswell and	Kluwer Academic
	in Structural Dynamics	J.E. Mottershead	Publishers, Dordrecht,
			The Netherlands, 1995
2	Modal Analysis	He and Fu	Butterworth Heinemann Publisher, Oxford, 2001
RECOMMENDED BOOKS			
1	Structural Dynamics Theory and Computation	Mario Paz and William Leigh	Kluwer Academic Publisher, 2004

Course Code	MME205(f)
Course Title	Mechatronics
Type of Course	Elective
LTP	310
Credits	4
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional, Assignments, Quiz)	50
Course Prerequisites	Mechanical Vibrations, Automatic Controls
Course Objectives	 To enable students to learn about the Mechatronic Systems, Sensors and Actuation Systems. To enable students to appreciate the ubiquitous presence of Mechatronic systems in industry and everyday life. To enable students to be able to design basic mechatronic systems
Course Outcomes	 Post graduates who can contribute to the industrial problems concerning implementation of Mechatronics solutions. Post graduate students with the basic knowledge framework so as to contribute in the advancement of state-of-the-art in the field of Mechatronics.

Note for Examiner- The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

SECTION-A

MECHATRONICS, SENSORS AND TRANSDUCERS: Introduction to Mechatronics Systems – Measurement Systems – Control Systems – Microprocessor based Controllers. Sensors and Transducers – Performance Terminology – Sensors for Displacement, Position and Proximity; Velocity, Motion, Force, Fluid Pressure, Liquid Flow, Liquid Level, Temperature, Light Sensors – Selection of Sensors **ACTUATION SYSTEMS:** Pneumatic and Hydraulic Systems – Directional Control Valves – Rotary Actuators. Mechanical Actuation Systems – Cams – Gear Trains – Ratchet and pawl – Belt and Chain Drives – Bearings. Electrical Actuation Systems – Mechanical Switches – Solid State Switches – Solenoids – D.C Motors – A.C Motors – Stepper Motors.

SYSTEM MODELS AND CONTROLLERS: Building blocks of Mechanical, Electrical, Fluid and Thermal Systems, Rotational – Transnational Systems, Electromechanical Systems – Hydraulic – Mechanical Systems. Continuous and discrete process Controllers – Control Mode – Two – Step mode – Proportional Mode – Derivative Mode – Integral Mode – PID Controllers – Digital Controllers – Velocity Control – Adaptive Control – Digital Logic Control – Microprocessors Control.

SECTION-B

PROGRAMMING LOGIC CONTROLLERS: Programmable Logic Controllers – Basic Structure – Input / Output Processing – Programming – Mnemonics – Timers, Internal relays and counters – Shift Registers – Master and Jump Controls – Data Handling – Analogs Input / Output – Selection of a PLC Problem.

RAPID PROTOTYPING FOR MECHATRONIC PROJECTS: Prototyping Philosophies, Solid Modeling Tools, Modeling System Dynamics, Foam core, X-Acto Knives, 2-D Rapid Prototyping: Laser Cutting/Laser CAMM, Tab and Slot Construction, 3-D Rapid Prototyping: SLA, SLS, FDM and Soft Mold Castings.

DESIGN OF MECHATRONICS SYSTEM: Stages in designing Mechatronics Systems – Traditional and Mechatronics Design - Possible Design Solutions Case Studies of Mechatronics Systems, Pick and place robot – automatic Car Park Systems – Engine Management Systems.

TEXT	BOOKS		
S.	NAME	AUTHOR(S)	PUBLISHER
No.			
1	Mechatronics	W. Bolton	PearsonEducation,
			Second Edition, 1999
2	Mechatronics Integrated	Smaili. A and Mrad. F.,	Oxford University
	Technologies for Intelligent		Press, 2008
	Machines		
RECO	MMENDED BOOKS		
1	Structural Dynamics Theory	Nitaigour Premchand	Tata McGraw-Hill
	and Computation	Mahadik,	Publishing Company
			Limited, 2003

Course Code	MME205(g)
Course Title	Advanced Control System
Type of Course	Elective
LTP	310
Credits	4
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional, Assignments,	50
Quiz)	
Course Prerequisites	Introductory course on Automatic
	Controls
Course Objectives	To introduce modern control theory
	and state space analysis
Course Outcomes	Ability to control MIMO systems.
	Ability to control complex dynamic
	systems.

Note for Examiner- The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

SECTION-A

TRANSIENT AND STEADY STATE RESPONSE: Time domain representation –Laplace domain representation– Solution of second order differential equation with constant coefficients– System with proportional control– Proportional cum derivative control – Proportional cum integral control.

CONTROL SYSTEM ANALYSIS USING STATE VARIABLE METHODS: State variable representation-Conversion of state variable models to transfer functions-Conversion of functions canonical state variable models-Eigenvalues transfer to and eigenvectors-Solution of state equations-Concepts controllability of and observability-Equivalence transfer function variable between and state representations-Multivariable systems.

STATE VARIABLE ANALYSIS OF DIGITAL CONTROL SYSTEMS: State descriptions of digital processors–State description of sampled continuous-time plants–State description of systems with dead-time – Solution of state difference equations – Controllability and observability.

SECTION-B

POLE-PLACEMENT DESIGN AND STATE OBSERVERS: Stability improvement by state feedback – Necessary and sufficient conditions for arbitrary pole-placement – State regulator design – Design of state observers – Compensator design by the separation principle

Linear quadratic optimal control through Lyapunov Synthesis: Concept of Lyapunov stability – Lyapunov functions for linear systems – Parameter optimization and optimal control problems – Quadratic performance index – Optimal state regulator – Optimal digital control systems

TEXT	TEXT BOOKS			
S.	NAME	AUTHOR(S)	PUBLISHER	
No.				
1	Digital control and state	M. Gopal	Tata McGraw-Hill Publishing	
	variable methods		Company	
2	Theory and applications of Automatic controls	B. C. Nakra	New Age International Publishers	
RECO	MMENDED BOOKS			
1	Automatic control	Benjamin.C.Kuo	Prentice Hall of India, 7th	
	systems		Edition,1995	
2	Linear control system	John J. D'azzo &	Tata McGrow-Hill, Inc., 1995.	
	analysis and design	Constantine H.Houpis		
3	Modern Control Systems	Richard C. Dorf &	Addidon – Wesley, 1999.	
4	State Space Analysis of	Onata K	Prentice Hall	
Т	Control Systems			
5	Digital Control of	G. F. Franklin, J.	Addison Wesley, 1998, Pearson	
	Dynamic Systems,.	D. Powell and M.	Education, Asia, 3/e, 2000	
		L. Workman		
6	Computer Controlled	K. J. Astroms	Prentice Hall, 3/e, 1997.	
	Systems - Theory and	and B.		
	Design	Wittenmark		

Course Code	MME205(h)
Course Title	Imaging and Additive
	Manufacturing
Type of Course	Elective
LTP	310
Credits	4
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional, Assignments,	50
Quiz)	
Course Prerequisites	Manufacturing processes, CAD, Engineering Drawing
Course Objectives	 To learn process of image capturing and transformations. To understand translation of medical images into 3D printed parts. To conceptualize various processes of additive manufacturing. To learn about material types and transformations during 3D printing
Course Outcomes	 Students will be able to understand types of medical images. Students will be able to learn the complete process of additive manufacturing. Students will be able to apply different types of additive manufacturing methods in medical and engineering applications.

Note for Examiner- The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

Section A			
S.N o	Topics	Lectures	
1	Introduction And Digital Image Fundamentals: The origins of Digital Image Processing Examples of Fields that Use Digital Image Processing Fundamentals Steps in Image Processing Elements of Digital Image Processing Systems. Elements of digital image processing, Image model, Sampling and quantization, Relationships between pixels	10	
2	Medical Imaging applications: CT, MRI, X-Rays, USG, Sensing element, Adjacency, Neighborhood,	5	
3	2D & 3D Transformations: Translations, Scaling, Reflection, Rotation,Numericals, Homogeneous representation of transformation, Transformation matrix, Concatenation of transformations, Vector inner products, (Bi) Orthogonal, (Bi) Orthonormal, Role of basisfunctions, Perspective projections, Vanishing point, Axonometric projections	10	
	Section B		
S.N o	Topics	Lectures	
4	Design of Surfaces and Solids:Differential geometry, Curves in space, Curves on surface, Ordinary and Singular Points, Developable surfaces, Surfaces of revolution, Curves of Intersection, Surface modeling, 16-point form, Coons patch, B-spline surfaces. Design of Solids: Solid entities, Boolean operations, B-rep of Solid Modeling, CSG approach of solid modeling, Advanced modeling methods.	10	
5	Rapid Prototyping: FDM, SLA, SLS, Polymer filament wires, resins, powders, resolution, layer thickness, warping, build volume	10	
6	3D Scanning and Printing: STL, DICOM, surface scanning, types of 3D scanners, Transformation of images for 3D printing	5	

TEXT BOOKS			
S. No.	NAME	AUTHOR(S)	PUBLISHER
1	Digital Image Processing	Gonzalez and woods	
2	Handbook of Medical Image Processing and Analysis	Isaac Bankman	
RECOMMENDED BOOKS			
1	Geometric Modeling	Michael E. Mortenson	
2	Computer Aided Engineering Design	AnupamSaxena, BirendraSahay	

Elective III Courses In Semester 3

Course Code	MME302(a)	
Course Title	Modeling Of Manufacturing	
	Systems	
Type of Course	Elective	
LTP	310	
Credits	4	
Course Assessment Methods		
End Semester Assessment (University Exam.)	50	
Continuous Assessment (Sessional, Assignments,	50	
Quiz)		
Course Prerequisites	Basic knowledge in mathematical	
	methods and manufacturing	
	processes at UG level	
Course Objectives	To be capable of developing a	
	thorough knowledge in computational	
	techniques to aid in the modeling and	
	analysis of manufacturing systems.	
Course Outcomes	After the completion of the course the	
	student should be able to:	
	Model, simulate, analyze and	
	optimize the advanced	
	manufacturing system.	

SYLLABUS

Note for Examiner- The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

SECTION-A

Introduction:Introduction and Overview, concept of system environment, element of systems, system modeling, types of models. Monte Carlo method, system simulation, Simulation-Management Laboratory, Advantages limitations of systems, Simulation of Continuous and Discrete system. (12 Hrs)

Modeling of Continuous system:Characteristics of Continuous System, comparison of Numerical integration with continuous simulation system simulation of integration formula (12 Hrs)

Modeling of Discrete System:

Time flow mechanisms, Discrete and continuous probability density function, Generation of random numbers, Testing of random numbers for randomness and for auto correction, generation of random verities for discrete distribution, generation of random varieties for continuous probability distribution-binomial, normal exponential and beta distribution, combination of discrete event and continuous models. (12 Hrs)

Modelling of queuing system:Concept of queuing theory, Characteristics of queues, stationary and time dependent queue, queue discipline, time series analysis, measure of system performance, Kendell's notation, autocovariance and autocorrelation function, auto correlation effects in queuing system, simulation of single server queues, Multi server queues, queues involving complex arrivals and service times with blanking and reneging (12 Hrs)

SECTION-B

Design of simulation experiments: Length of run, elimination of initial bias. Variance reduction techniques, stratified sampling, antipathetic sampling common random numbers, time series analysis, spectral analysis, model validation, optimization procedures, search methods, single variable deterministic case search, single variable non-deterministic case search, regenerative techniques

(12 Hrs)

Modelling & Simulation of PERT: Simulation of –Maintenance and replacement problems, capacity planning production system, reliability

TEXT BOOKS			
S. No.	NAME	AUTHOR(S)	PUBLISHER
1	Simulation and Modeling	Loffick	Tata McGraw Hill
2	System Simulation with Digital Computer	DeoNarsingh	Prentice Hall of India
RECOMMENDED BOOKS			
1	System Simulation	D.S. Hira	S. Chand & Co.
2	Simulation Modeling & Analysis	David Kelton	Tata McGraw Hill
3	System Simulation	Gorden	Prentice Hall

Course Code	MME302(b)
Course Title	Finite Element Method
Type of Course	Elective
LTP	310
Credits	4
Course Assessment Methods End Semester Assessment (University Exam.) Continuous Assessment (Sessional, Assignments, Quiz)	50 50
Course Prerequisites	Mechanics of Materials
Course Objectives	 To learn fundamental knowledge and basic principles of finite element analysis. To learn about various finite elements which represent engineering structure. To develop the knowledge and skill to effectively evaluate finite element solutions of structural, thermal and dynamic problems.
Course Outcomes	 Understand the concepts and theory of formulation methods in FEM. Identify the characteristics of finite elements and their applications. Develop global equations and apply suitable boundary conditions. Able to get the finite element solution of various engineering problems.

Syllabus

Note for Examiner- The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

Section A

1 Fundamental Concepts : Historical Background, Stresses and Equilibrium, Boundary Conditions, Strain—Displacement Relations, Temperature Effects, The Rayleigh—Ritz Method, Galerkin's Method, Saint Venant's Principle, Von Mises Stress, Overview of the software used for FE methods, Advantages and disadvantages of FE methods

2.Discretization of the Domain: Types of elements, location of nodes, number of elements, simplification offered by physical configuration of body, node numbering scheme.

3. One & Two Dimensional Problems : Introduction, Coordinates and shape functions, Potential energy approach, Galerkin Approach, Assembly of the global stiffness matrix and load vector, FE equations and treatment of boundary conditions, Quadratic shape functions, ,Two dimensional problems using constant strain triangles. Quadrilateral elements.

4. Axisymmetric solids subjected to axisymmetric loadings: Axisymmetric formulation, FE modeling using triangular element, problem modelling and boundary conditions.

Section B

5. Static Analysis: Plane and three dimensional Trusses, Assembly of global matrix for the banded and skyline solutions, Beams and frames under various boundary conditions.

6. Dynamic Analysis: Formulation for solid body with distributed mass, Element mass matrices, Evaluation of eigenvalues and eigenvectors, Guyan reduction, Rigid body modes

7. Pre-processing and Post processing: Pre-processing, Mesh generation, Post processing, Deformed configuration and mode shape, Convergence requirements, Mesh refinement, Error: sources and detection

8. **FE based optimal design:** Design parameterization, Structural optimization, Topology optimization, Approximation techniques, and Design sensitivity analysis.

TEXT BOOKS			
S. No.	NAME	AUTHOR(S)	PUBLISHER
1	FE Procedures	Bathe	Pearson, 2009
2	Introduction to FEM	Reddy	McGraw-Hill, 2017
3	Introduction to FE in Engineering	Chandupatla, Belegundu	Pearson, 2015
4	FE Method for Engineers	Huebner	Wiley, 2009
5	Fundamentals of FEA	Hutton	McGraw-Hill, 2003
6	FEA with ANSYS	Moaveni	Pearson, 2011
7	Introduction to FEM (2009)	Thompson	Wiley

Course Code	MME302(c)
Course Title	Computational Fluid
	Dynamics
Type of Course	Elective
LTP	310
Credits	4
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional, Assignments,	50
Quiz)	
Course Prerequisites	Fluid Mechanics, Numerical
	Analysis, Thermodynamics,
	and Heat transfer
Course Objectives	1. To understand basics of
	computational fluid dynamics
	2. To learn different methods for
	discretization of Navier Stokes
	Equations
	3. To implement various
	algorithms to solve Navier
	Stokes Equations for Simple
	Flows over flat plates and flows
	with heat transfer in 1D and 2D.
Course Outcomes	1. Students will be able to
	discretize PDEs using different
	methods
	2. Students will develop
	understanding about selection
	of different methods available
	tor solving Navier Stokes
	Equations according to different
	boundary conditions.

Note for Examiner- The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

SECTION-A

Introduction:History of CFD; Computational Fluid Dynamics: What, When, and Why?, CFD Applications, Numerical vs Analytical vs Experimental, Modeling vs Experimentation, Fundamental principles of conservation, Reynolds transport theorem, Conservation of mass, Conservation of linear momentum: Navier-Stokes equation,

Conservation of Energy, General scalar transport equation (5 hrs)

Problem Formulation: The standard procedure for formulating a problem Physical and Mathematical classification of problems; Types of governing Differential equations and Boundary conditions. Mathematical classification of Partial Differential Equation, Illustrative examples of elliptic, parabolic and hyperbolic equations, Physical examples of elliptic, parabolic and hyperbolic partial differential equations (6 hrs)

Methods of Discretisation: Discretization principles: Pre-processing, Solution, Post-processing, Finite Element Method, Finite difference method, Well posed boundary value problem, Possible types of boundary conditions, Conservativeness, Boundedness, Transportiveness, Finite volume method (FVM), Illustrative examples: 1-D steady state heat conduction without and with constant source term (5 hrs)

Finite Volume Method: Some Conceptual Basics and Illustrations through 1-D Steady State Diffusion Problems: Physical consistency, Overall balance, FV Discretization of a 1-D steady state diffusion type problem, Composite material with position dependent thermal conductivity, Four basic rules for FV Discretization of 1-D steady state diffusion type problem, Implementation of boundary conditions

(4hrs)

SECTION-B

Numerical Solution to Heat Conduction Problems: Steady-state Problems: (i) One-dimensional Heat Con conduction Transfer through a Pin-fin (ii) Two-dimensional Conduction through a plate Unsteady-state Problem: One-dimensional Transient Heat Conduction. Explicit and Implicit Methods, Stability of numerical Methods.

(10 hrs)

Numerical Solution to Fluid Flow Problems: Types of fluid flow and their governing equations; Viscous Incompressible flows Calculation of flow field using the stream function-vorticity method; Calculation of boundary layer flow over a flat plate; Numerical algorithms for solving complete Navier- Stokes equations- MAC method; SIMPLE algorithm; Project problem. (12hrs)

TEXT BOOKS			
S. No.	NAME	AUTHOR(S)	PUBLISHER
1	Numerical Heat Transfer and Fluid Flow,	S. V. Patankar	Mc. Graw Hill (2007)
2	Computational Fluid Dynamics	T. J. Chung,	Cambridge University Press
RECOMMENDED BOOKS			
1			
2			

Course Code	MME302(d)
Course Title	Vibration Testing
Type of Course	Elective
LTP	310
Credits	4
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional, Assignments,	50
Quiz)	
Course Prerequisites	Introductory course on mechanical
	vibrations
Course Objectives	Introduction of various techniques
	that can be used to measure and
	analyze mechanical vibrations.
Course Outcomes	Ability to test a structure for
	vibrations and ability to extract
	modal parameters from vibration
	signals.

Note for Examiner- Examiner will set 7 questions of equal marks. First question will cover whole syllabus, having 10 conceptual questions of 1 mark each or 5 questions of 2 mark each and is compulsory. Rest of the paper will be divided into two parts having three questions each and the candidate is required to attempt at least two questions from each part.

SECTION-A

Overview: Introduction and basic philosophy of modal testing; Historical development of modal testing; Practical applications of modal testing; Basic terminology and notations related to modal testing.

Methods of Vibration Testing: Impulse hammer method of modal testing; Roving accelerometer method; Roving hammer method; Shaker method of modal testing; Types of shakers and their relative merits and demerits; Comparison of hammer and shaker method of modal testing.

Basic Hardware for Vibration Testing: Working, comparison and selection criterion for different types of accelerometers, mountings of accelerometers, impulse hammers, exciters, connecting cables, charge amplifiers, filters, windows, FFT analyzers.

FRF Measurement: Preparation of test structure; Effects of double hitting; Methods of avoiding double hitting effects; Effects of mass loading; Methods of avoiding mass loading effects; Different types of windows and their use in FRF measurements; Different estimates of FRF and effects of noise; Methods of dealing with incomplete measured data; Repeatability of measured FRF data; Reciprocity of measured FRF data.

SECTION-B

Verification of Experimental Results: Visual checks; Low-frequency asymptotes; High-frequency asymptotes; Incidence of anti-resonances; Overall shape of FRF skeleton; Nyquist plot inspection; Repeated modes.

Modal Parameter Extraction Methods: Frequency domain methods; Time domain methods; SDOF methods; MDOF methods; Single-FRF methods; Multi-FRF methods; Difficulties in modal parameter extraction due to damping and model order.

Display of Modal Models: Static displays; Deflected shapes; Multiple frames; Argand diagram; Dynamic displays; Interpretation of displays of modal models.

Applications of Vibration Testing:

Practical applications of vibration testing on following real life structures:

Cantilever beam Fixed-fixed beam Drilling machine skeleton (F-structure) Lathe I.C. Engine Structure

TEXT BOOKS			
S. No.	NAME	AUTHOR(S)	PUBLISHER
1	Modal Testing: Theory, Practice and Application	D.J. Ewins	Second edition, Research Studies Press Limited, England, 2000
2	Theoretical and Experimental Modal Analysis	N.M.M. Maia and J.M. Silva	Research Studies Press Limited, England, 1997
RECOMMENDED BOOKS			
1	Modal Analysis	He and Fu	Butterworth Heinemann Publisher, Oxford, 2001, ISBN 0 7506 5079 6

Course Code	MME302(e)	
Course Title	Optimization Techniques	
Type of Course	Elective	
LTP	310	
Credits	4	
Course Assessment Methods		
End Semester Assessment (University Exam.)	50	
Continuous Assessment (Sessional, Assignments,	50	
Quiz)		
Course Prerequisites	Calculus, Linear Algebra,	
	Operations Research	
Course Objectives	1. To understand the theory of	
	optimization methods and	
	algorithms developed for solving	
	various types of optimization	
	problems	
	2. To develop and promote	
	research interest in applying	
	optimization techniques in	
	problems of Engineering and	
	lechnology	
	3. To apply the mathematical	
	results and numerical techniques	
	of optimization theory to concrete	
Course Outcomes	1 Understanding the need and	
Course Outcomes	importance of entimization	
	2 Understanding and Practice of	
	2. Onderstanding and Fractice of	
	3 Understanding and Practice of	
	the different Non Linear	

Note: The examiner shall set 8 questions i.e., 4 from each part and students shall be required to attempt a total of 5 questions with at least 2 questions from each part.

PART A

Linear programming: Modelling of linear programming problem – a few examples; Solution of linear programming problem – Graphical Method, simplex method, two-phase method, Big-M method; Sensitivity analysis using Graphical technique (12 Hrs) **Nonlinear programming:** Convex and non-convex search space, Kuhn-Tucker conditions, Hessian matrix; Transformation of constrained optimization problems into unconstrained ones – penalty function approach; Direct search – variable elimination method, random search method (12 Hrs)

PART B

Integer Programming: Modelling of integer programming problem – a few examples; Solution of integer programming problem – branch & bound algorithm, cutting-plane algorithm; Travelling salesman problem – formulation, solution and practical applications (12 Hrs)

Heuristic models: Limitations of traditional optimization approaches to solve real world problems, Population based optimization techniques, Simple genetic algorithms – introduction, representation of variables, fitness function, genetic operators – reproduction, crossover, mutation; Advantages and limitations of population based optimization techniques over the point-to-point based ones (12Hrs)

Recommended Books:

Author(s)	Publisher
Taha, H. A.	
Deb, K.	
D.S. Hira, P. K. Gupta	S. Chand
	Author(s) Taha, H. A. Deb, K. D.S. Hira, P. K. Gupta

Course Code	MME302(f)
Course Title	Materials Design
Type of Course	Elective
LTP	310
Credits	4
Course Assessment Methods End Semester Assessment (University Exam.) Continuous Assessment (Sessional, Assignments, Quiz)	50 50
Course Prerequisites	Mechanics of Materials, Materials and Heat Treatment
Course Objectives	 To introduce applications of composite materials To educate students about various material characterization techniques To familiarize students on the effects of using nano-materials in composites To educate students about the uses of modelling in micro and nano scale characterization
Course Outcome	 Evaluate the uses and applications of different types of materials and composites Analyze and characterize variety of materials for different types of applications Model structures comprising of different types of materials Learn various techniques for composite fabrication

Note: The examiner shall set 8 questions i.e., 4 from each part and students shall be required

to attempt a total of 5 questions with at least 2 questions from each part.

SECTION-A

Principles of designing components for various engineering applications. Basic Introduction to various types of engineering, dental and bio-materials: Types of

engineering materials, properties, glass transition temperatures, mechanical properties, characterization of polymers and ceramic materials (6 hrs)

Introduction to fabrication techniques and methodologies for different types of composite materials: Processing of plastics, extrusion, blow molding, compression moulding, mechanical behavior of ceramics, solvent mixing, melt blending, types of composite materials, laminates, dispersion, particle and fibre strengthening of composites (13 hrs)

SECTION-B

Simulation and Finite Element modeling techniques for characterization (10 hrs) Material analysis and testing techniques: Electron Microscopy, Raman and IR spectroscopy, interpretation of various spectra, crack identification and propagation, Weibull equation and distribution (5 hrs)

Material applications for engineering, dental and surface coatings: use of ceramics in body implants, material requirements for biocompatibility, ceramic compounds and their biomedical applications. Rapid prototyping methods and applications. (5 hrs)

TEXT BOOKS			
S. No.	NAME	AUTHOR(S)	PUBLISHER
1	Mechanical Behavior of Materials(3E)	Norman Dowling	Pearson Publishers
2	Mechanical Behavior of Materials	Bowman	John Wiley &Sons
RECOMMENDED BOOKS			
3	Mechanical Behavior of Engineering Materials	Roesler, Harders, Baeker	Springer