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Abstract 

 

     The area of vibration control is evolving rapidly primarily due to high demand of 

low weight structures in automobile sector. To ensure that vibration control happens 

efficiently when the product is in field, vibration testing of product is required in a 

laboratory in an environment that resembles that of field. In this study, a novel 

technique is presented for generating desired transient vibrations in a test plate 

structure.  

     For this, first three vibration modes of a cantilevered plate have been 

simultaneously made to track reference curves. Cantilevered plate structure is 

instrumented with one piezoelectric sensor patch and one piezoelectric actuator patch. 

Quadrilateral plate finite element having three degrees of freedom at each node (two 

rotations and one flexural displacement) is employed to divide the plate into finite 

elements. Thereafter, Hamilton’s principle is used to derive equations of motion of 

the smart plate. In Hamilton’s principle kinetic energy, potential energy and work 

expressions of a single finite element of smart plate are substituted. Variations with 

respect to displacement vector are taken to derive mass matrix, stiffness matrix and 

force vector of finite element model. Finite element model of structure is reduced to 

first three modes using orthonormal modal truncation and subsequently the reduced 

finite element model is converted into a state-space model. Optimal tracking control 

is then applied on the state-space model of the smart plate. Optimal control law 

optimizes a performance index which results in minimization of difference between 

actual trajectories and reference trajectories using minimal control effort. Feedback 

gain and feedforward gains of controller are calculated offline by solving a Riccati 

equation. Using this optimal controller, cantilevered plate is made to vibrate as per 

desired decay curves of first three modes.  

    Simulation results show that presented optimal control strategy is very effective in 

simultaneously tracking first three vibration modes of the smart plate. Theoretical 

findings are verified by conducting experiments. For experimentation, Kalman 

observer is used to estimate first three modes and Labview software is used for 
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interfacing intelligent plate to the host PC. Presented strategy can be used to do 

dynamic vibration testing of a product by forcing the product to experience same 

transient vibrations that it is expected to experience while in field.  
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Chapter 1: Introduction  

 

     Our vocal cords vibrate so that we can articulate our feelings via our speech. 

Vibrations of our vocal cords sets the air surrounding us into vibrations (contractions 

and rarefactions). Our speech travels through air to ears of a listener and his/her ear-

drums are in turn set into vibrations. Vibrations of the ear drum are marvellously 

deciphered by the brain of the listener and our speech gets communicated to him/her. 

We owe our existence to incessant vibrations of our heart and our lungs. A physician 

gets a good idea of our condition by sensing vibrations of our heart through a 

stethoscope or by sensing our pulse around our wrist. When Nature decides to 

recreate, vibrations of an earthquake help in creating a blank canvas for mother 

Nature. So, importance of vibrations to mankind can just not be over emphasized.  

     In this material world, one can appreciate role of mechanical vibrations by 

comparing a ride on „Delhi Metro‟ and „Indian railway train‟ or ride on a „state 

transport bus‟ and „Volvo luxury bus‟. Vibrations generated by an I.C engine on a 

bumpy road profile, if not isolated sufficiently can result in acute inconvenience of the 

passengers travelling in an automobile. Compressor of a household refrigerator can be 

major source of noise if shell of the compressor is poorly designed. There have been 

instances when mighty bridges have been damaged by vibrations generated by march 

of soldiers or by a specific flow of wind. Mechanical machines having rotating parts 

such as pumps, turbines, fans, compressors etc have to be meticulously designed, 

properly aligned and sufficiently balanced so as to keep low vibration levels while in 

operation. Structure of an aeroplane particularly its wings are prone to flow induced 

vibrations and therefore special materials having high structural damping & high 

strength are needed. Material for construction of an aeroplane should also have low 

density to save fuel cost. Sometimes vibrations are required but mostly vibrations are 

cause of discomfort, unwanted noise and wastage of energy.  

     Vibrations may occur due to external excitation, unbalanced force, friction etc. 

There are three types of vibrations viz. free vibration, forced vibration and self-

excited vibration. Vibrations generated in a structure due to some initial displacement 

or/and velocity or/and acceleration are called free vibrations. Forced vibrations occur 
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when the structure is continuously excited by some harmonic or random force. In case 

of self-excited vibration exciting force is a function of motion of the vibrating body. 

Since time immemorial man has been trying to dissipate undesirable vibrations 

occurring in structures and machines. Several ways have been developed to control 

vibrations and newer techniques are being developed. Passive Vibration Control 

(PVC), Active Vibration Control (AVC) and semi-active vibration control are main 

ways to control vibrations. In passive control mass and/or stiffness and/or damping of 

the structure are changed so as to control structural vibrations, this may increase 

overall mass of the system. On the other hand, in active vibration control, an external 

source of energy is used to control structural vibrations. An actively controlled 

structure essentially consists of sensors to sense structural vibrations, a controller to 

manipulate sensed vibrations and actuators to deform the structure as per orders of the 

controller. Such a structure is also called “intelligent structure” because it exhibits 

desired dynamic characteristics even in the presence of an external load and 

disturbances in the environment. In semi-active vibration control technique, passive as 

well as active techniques are simultaneously used. Active vibration control may fail if 

an external source of energy gets exhausted or sensing mechanism ill performs or 

actuating mechanism ill performs or controller malfunctions. Therefore, semi-active 

control has found importance as in this technique passive technique can still control 

the vibrations if active technique fails. AVC is suited for applications where stringent 

weight restrictions are present e.g. aerospace, nanotechnology, robotics etc. In 

situations where low-frequency vibrations are present, AVC is more effective than 

PVC. 

     In AVC different type of sensors can be used e.g. strain gauge [1], piezoelectric 

accelerometer [2], piezoelectric patch [3], Piezoelectric Fibre Reinforced Composite 

(PFRC) [4], Poly Vinylidene Fluoride (PVDF) [5] etc. Similarly different type of 

actuators can be used e.g. magneto-rheological damper [6], electro-rheological 

damper [7], piezoelectric patch [8], piezoelectric stack [9] etc. Piezoelectric patches 

have been extensively used in AVC both as sensors as well as actuators. Piezoelectric 

materials have coupled electromechanical properties. Piezoelectric material layers can 

be pasted on the base structure [10] or segmented piezoelectric patches can be pasted 

on the surface [11], piezoelectric layer can be sandwiched between two layers of 
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structure [12], segmented piezoelectric patches can be embedded in the composite 

structure [13], wires of piezoelectric material can be embedded in the composite 

structure [14] etc. 

 

 

 

 

 

 

     In figure (1.1), one piezoelectric sensor and one piezoelectric actuator are 

instrumented on a cantilevered plate. Signal sensed by the sensor is conditioned by 

signal conditioner and then fed to host PC through A/D card. Control voltage 

generated by host PC is converted into an analog voltage, suitably amplified and then 

applied on the piezoelectric actuator. Following steps have to be followed for 

implementing active vibration control on a typical structure: 

 Create mathematical model of structure instrumented with sensors and actuators  

 Find optimal locations of sensors and actuators  

 Design a suitable controller  

Numerous simulations have to be performed using the mathematical model of the 

structure so as to evaluate performance of an AVC scheme under various loads. 

Following sections briefly discuss typical steps that need to be followed while 

actively controlling a structure. 

1.1. Mathematical model of a structure 

     First step in AVC is to capture the physics of the system in mathematical form. For 

creating mathematical model of an intelligent structure, governing equations of 

 

Figure 1.1 Schematic diagram of an intelligent structure 
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motion of the base structure and relation for electro-mechanics of sensors & actuators 

are required [15]. Governing equations of motion of the structure can be written using 

experimental tests [16], finite element techniques [17] and Hamilton's principle [18]. 

Finite element technique is powerful and widely accepted technique for analysing an 

intelligent structure. Generally, to derive equations of motion of a structure, following 

steps can be followed: 

 Define the structure using an appropriate coordinate system and draw its schematic 

diagram 

 Draw free body diagrams of the structure 

 Write equilibrium relations using free body diagrams 

 

1.2. Optimal placement of sensors and actuators 

     Placement of sensors and actuators at appropriate locations over a base structure 

using an optimization technique is called an optimal placement. One important issue 

in active vibration control is to find the optimal position and size of sensors/actuators. 

Limited number of sensors and actuators can be placed over a structure in many ways. 

Effective optimal placement of sensors/actuators over a structure increases the 

performance of an AVC scheme. Usually to find optimal locations of 

sensors/actuators, a criterion is exterimized which is called an optimization criterion. 

Then a suitable optimization technique is employed to search optimal locations of 

sensors and actuators over the base structure.  

1.2.1. Optimization criteria 

     The process of optimal placement of sensors/actuators over a structure aims at 

maximizing the efficiency of an AVC scheme. Some criterion is fixed based upon end 

application and is subsequently extremized so as to obtain locations of 

sensors/actuators. Some of the possible optimization criteria which can be used in 

AVC are: 
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 Maximizing force applied by actuators 

In AVC, actuators are desired to be placed over the structure in such a way that forces 

applied by actuators on the base structure are large. For instance, in case of a 

cantilevered plate, force applied by actuators can be maximized when actuators are 

placed near the root of the cantilevered plate. Hence, output force by an actuator can 

be considered as a criterion for optimal placement of actuators.  

 Maximizing deflection of the base structure: 

In AVC, actuators are desired to be placed over the structure in such a way that 

maximum deflection of the base structure is obtained. Therefore, deflection of base 

structure can be considered as a criterion for optimal placement of actuators. 

 Maximizing degree of controllability/observability 

One of the necessary conditions in any control process is controllability and 

observability. Effective and stable AVC depends on the degree of controllability/ 

observability of the system. Controllability and observability can be checked by using 

rank test. Optimal placement of actuators/sensors can be determined by using degree 

of controllability/observability as optimization criterion.  

 Minimizing the control effort 

With ever increasing cost of energy, a very natural criterion for optimal placement of 

sensors and actuators over a structure is amount of control effort. Also, it is to be 

appreciated that limited supply of external energy is usually available to suppress the 

structural vibrations. Therefore, minimizing the control energy can be considered as a 

criterion for optimal placement of sensors/actuators. 

 Minimizing the spillover effects 

A continuous structure has infinite natural frequencies or modes. Usually first few 

modes of vibration have most of vibrational energy. Therefore in AVC, controller is 

designed to control first few modes only and not all the modes. Uncontrolled residual 

modes can make the system unstable and reduce the control effectiveness. This 

phenomenon is called as spillover effect. Therefore, placement of sensors/actuators 

can be selected that minimizes the spillover effects. 
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1.2.2. Optimization techniques 

     A large number of optimization methods are available and still new techniques are 

continuously coming [19]. Optimization is an art of finding the best convergent 

mathematical solution that extremizes an objective function.  Best mathematical 

solution is calculated by maximizing the efficiency function or/and minimizing the 

cost function of the system. Optimization techniques can be classified as classical 

techniques (single variable function & multivariable function with no constraints), 

numerical methods for optimization (linear programming [20], nonlinear 

programming [21], integer programming [22] and quadratic programming [23]) and 

advanced optimization methods (univariate search method [24], swarm intelligence 

algorithm [25], simulated annealing algorithm [26], genetic algorithms [27], Tabu 

search [28]). 

1.3. Control law 

     Finally, a control technique has to be used to generate a suitable control signal in 

an AVC application. Control strategies which have been applied in AVC so far, can 

be classified as: classical control, modern control and intelligent control. 

1.3.1. Classical control 

     Classical control techniques are described using system transfer functions. 

Feedback controller, feedforward controller and PID controller have been frequently 

used in active vibration control. In feedback control, manipulated signal is calculated 

using error between setpoint and dynamic output signal. In feed-forward controller, 

control signal is based on error signal and disturbance signal. The feedback control 

[29], feed forward control [30], Proportional-Integral-Derivative (PID) [31] are the 

very famous control techniques which have been used practically in AVC.  

1.3.2. Modern control 

     Classical control methods are limited to single-input single-output (SISO) control 

configurations and being used for linear time-invariant systems only. To solve multi-

input and multi-output (MIMO) systems, modern control techniques are used. 
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Governing equations of the plant are converted into a state-space format. In optimal 

control, control gains are derived by extremizing a performance index. In eigenvalue 

assignment method, those control gains are used which give desired eigen values of 

the plant in closed loop. Control gains can also be calculated by satisfying Lyapunov 

stability criterion. Many times an observer is used to estimate states of the plant and 

these estimated states are used in the control law. Adaptive control [32], optimal 

control [33], robust control [34], sliding mode control [35],  -control [36] etc have 

been frequently used in active vibration control. 

1.3.3. Intelligent control 

     Classical and modern control theories find it difficult to control uncertain and 

nonlinear systems effectively. Therefore, most of nonlinear systems are stabilized 

using controllers based on intelligent control. Intelligent control exhibits intelligent 

behaviour, rather than using purely mathematical method to keep the system under 

control. Intelligent control is most suited for applications where mathematical model 

of a plant is not available or it is difficult to develop mathematical model of a plant. It 

is based on qualitative expressions and experiences of people working with the 

process. Neural network based control techniques require a set of inputs and outputs 

for training the neural network by a training algorithm. Once neural network has been 

trained for specific purpose, the network gives useful outputs even for 

unknown/unforeseen inputs. No mathematical model of the plant is required for 

neural network based control. Fuzzy logic is based on simple human reasoning. Fuzzy 

logic involves: fuzzification, rule base generation and defuzzification. Simple if-then 

rules specify the control law. Input variables are fuzzified using fuzzy sets in step 

called fuzzification. Crisp output is obtained by defuzzifying output variables in step 

called defuzziification. Mamdani fuzzy controllers [37] and Takagi-Sugeno fuzzy 

controllers [38] are extensively used techniques in fuzzy logic.  

1.4. Illustration of principle of active vibration control 

     Let us understand the principle of active vibration control through an example of a 

two degrees of freedom spring-mass-damper system shown in figure (1.2). 
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Mass      is connected to mass       through spring of stiffness       and damper 

with damping coefficient     . Mass       is connected to a boundary through a spring 

of stiffness      and a damper with damping coefficient     . Mass       is connected 

to a boundary through a spring of stiffness       and a damper with damping 

coefficient     . Actuator     is capable of exerting force      on mass     . Free body 

diagrams  of the two masses are drawn in figure (1.3). 

 

 

 

Equations of motion are written from free body diagrams as: 

 
   ̈    (     )    ( ̇   ̇ )          ̇    

   ̈     ̇           (     )    ( ̇   ̇ )    
(1.1)  

So we have a system of two second order ordinary differential equations which are 

coupled with each other. These equations can be converted into a state-space format 

by taking: 

     ̇      and        ̇                

now equations  (1.1) can be rewritten as: 

 
   ̇    (     )    (     )              

   ̇                (     )    (     )    
(1.2)  

These equations can be expressed as matrix equation of motion as: 

 * ̇+    , -   * +    , -   * +    (1.3)  

where 

 
Figure 1.3 Free body diagrams of the two masses 

 

 

Figure 1.2 Schematic diagram of two degrees of freedom spring-mass-damper system 
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Control law for this system can be expressed as: 

       * +   * +    (1.4)  

where * +    is vector of control gains. This vector of control gains can be easily 

obtained using optimal control, pole-placement technique, Lyapunov control etc. 

State-space equations can be solved using following algebraic equation: 

     (   )   ̅       ( )   ̅    ( ) (1.5)  

where  ̅    and  ̅    are discretised forms of   and   matrices discretised using a 

small sampling time interval. Alternatively, second order coupled differential 

equations of motion of the system in closed loop can be solved using suitable 

numerical technique like Newmark-  method. Simulink software of MATLAB can 

also be employed to solve this system. Simulink model for this system is produced in 

figure (1.4). 

For            ,                    ,                     

optimal gains can be obtained using LQR command in MATLAB as: 

   ,                                    -  

If at time = 0 second,    ,         - then controlled and uncontrolled responses of 

both the masses are as plotted in figures (1.5) and (1.6). It can be observed that 

application of optimal control has successfully suppressed vibration of both the 

masses. 
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Figure 1.4 Simulink model of two degree of freedom system 

 

 

Figure 1.5 Controlled/uncontrolled time responses of a two degree of freedom system, 

mass M1 
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Figure 1.6 Controlled/uncontrolled time responses of a two degrees of freedom system, 

mass M2 
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Chapter 2: Literature review 

 

2.1. Introduction 

     Active Vibration Control (AVC) has attracted lot of interest during last few 

decades. Numerous researches have been published and still new researches are 

required to fill the research gaps in AVC. Not many applications are visible in real 

world in which concept of AVC has been applied. This field is thoroughly 

interdisciplinary involving knowledge of physics, mechanics, instrumentation, 

control, signal processing, programming and electronics. Therefore project on actively 

controlled structure would require a cross-functional team with members coming from 

diverse backgrounds. Application of an AVC scheme on a structure requires: 

 mathematical model of intelligent structure 

 optimal placement of sensors/actuators over the structure 

 usage of suitable control law 

These vital aspects of AVC are discussed in following sections. 

2.2. Mathematical model 

     Mechanical structures can be broadly classified as beams, plates and shells. 

Numerous mathematical models of these structures are available. A researcher 

working in AVC selects a suitable model, uses it to model his/her intelligent structure 

and applies suitable control law. In this section a comprehensive review of 

mathematical models is done. 

2.2.1. Mathematical model of beam-like structure 

     A cantilever beam can be divided into discrete elements of same length that are 

modelled using rigid-body dynamics to get lumped parameter model. Equation of 

motion of lumped parameter model can be obtained using Lagrange’s equation: 

 
 

  
(
  

  ̇ 
)  

  

   
 

  

   
                                   (2.1)  
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where   is kinetic energy of system,   is potential energy of system,   is time variable 

and    is vertical coordinate of      lumped mass. Potential energy and kinetic energy 

of the cantilever beam as a continuum replaced by lumped masses can be expressed 

as: 
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(2.2)  

where    is bending stiffness,    is mass,    is change in angular displacement,    is 

moment of inertia about   axis perpendicular to the centre line of the beam and   is 

acceleration due to gravity [39]. 

Finite element model of isotropic as well as orthotropic fiber reinforced composite 

beam with distributed piezoelectric actuator subjected to both electrical and 

mechanical loads can be developed using simple higher order shear deformation 

theory. The displacement fields for the beam instrumented with piezoelectrics using 

higher order shear deformation theory at any point through the thickness are: 

 

                    
 

   
      

  

  
  

            

                

(2.3)  

where     &   are displacements in  ,   &   directions respectively,    is displace-

ment in midplane in   direction,    is displacement in midplane in   direction,    is 

rotation about   axis and   is beam thickness. The kinetic energy of the structure with 

mass density   and volume  , can be written as: 

   
 

 
∫    ̇   ̇  
 

   (2.4)  

Work done due to external mechanical and electrical loads can be written as: 
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   ∫    
 

 

   ∫    
 

 

         ∫   
 

   (2.5)  

where   is length of beam element,    &     are axial & transverse mechanical forces 

respectively,   is surface charge density on the actuator surface,   is electrical 

potential on the piezoelectric surface area  ,    
 is     point force and    is     point 

displacement. Potential energy in case of isotropic beam and orthotropic beam can be 

expressed as: 

isotropic beam          
 

 
∫      

 
 

     
    ̃          ̃ 

   
     

orthotropic beam     
 

 
∫   ̃     

 
 

  ̃     
    ̃          ̃ 

   
     

(2.6)  

where     is strain in   direction,     is shear strain in  -  direction,   is Young’s 

modulus of elasticity,  ̃  &   ̃ 
  are modified piezoelectric coefficients,   is modulus 

of rigidity,    is a piezoelectric coefficient,     is a piezoelectric coefficient and  ̃   

&  ̃   are reduced stiffness coefficients. Two node beam element with four 

mechanical degrees of freedom and one electrical freedom  at each node can be used 

to find out equations of motion. Expressions of potential energy, kinetic energy and 

work done can be substituted into Hamilton’s principle to obtain equations of motion 

[40]. 

Dynamic model of a piezolaminated composite beam can be developed with first 

order shear deformation theory, where displacements of beam are assumed to be as: 

 
                        

                
(2.7)  

where          &          are the axial & lateral displacements of a point on the 

midline and   is the bending rotation of the normal to the midline. Voltage on a 

piezoelectric layer mounted on the piezoelectric slender beam is given by: 

    
           

 
    

   
 

 
   

   

    
   (2.8)  

where    is z-coordinate of     layer,   is potential difference across     

piezoelectric layer,   is the bending rotation of the normal to the midline,   is 

thickness of the piezoelectric layer and     &     are constants which are dependent 

on properties of material. In case of closed electrode     , additional stiffness is 
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introduced due to direct piezoelectric effect resulting in increase in eigenvalue by 

about    for zero electric field in  -direction [41]. 

A laminated hygrothermopiezoelectric plate subjected to coupled effect of 

mechanical, electrical, thermal and moisture fields needs to satisfy following 

governing equations: 

 

conservation of momentum            ̈  

conservation of charge                  

heat condition equation                   ̇ 

moisture diffusion equation            ̇ 

(2.9)  

where    is electrical displacement,      is component of stress tensor,    is compo-

nent of displacement,   is mass density,    is heat flux component,    is stress-free 

reference temperature,   is entropy density,     is moisture flux component and   is 

change of moisture concentration. The weak form of these equations, can be 

formulated using the method of weighted residuals as: 

∫     (        ̈ )           (        ̇)           ̇  
 

     (2.10)  

where    ,   ,    and    are arbitrary and independent weight functions. Constitu-

tive equations and assumed solutions can now be substituted into this weak form 

equation (2.10) to solve the coupled system [42]. 

     A viscoelastic layer can be sandwiched between the host and the constraining layer 

for damping vibrations by way of shear deformation of the viscoelastic layer. In 

Active Constrained Layer Damping (ACLD), the passive constrained layer is replaced 

by an active piezoelectric material layer to extend and actively control the shear 

deformation of the viscoelastic layer. ACLD can be applied for controlling 

geometrically nonlinear vibrations of rotating composite beams. A nonlinear FE 

model can be made using First order Shear Deformation Theory (FSDT) and Von-

Karman type non-linear strain-displacement relations. Constitutive relation for the 

vicoelastic material can be used in following form as:  
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 {   
 }  ∫       

  

  

 

 

   (2.11)  

where   is time delay,   is time instant,      is the relaxation function of the 

viscoelastic material,   is strain and {   
 } is the stress vector for     layer. Hamilton’s 

principle can be used to write equations of motion of rotating composite beam 

subjected to ACLD treatment. Potential energy of the typical element of the ACLD 

beam system due to rotation of beam can be expressed as: 

    
 

 
∫         

  

  
    

  

 

 (2.12)  

where    is length of the element and         is the centrifugal load due to rotation of 

the beam [43]. 

In an efficient finite element model quadratic variation of electric potential   across 

the thickness of piezoelectric layer is incorporated by approximating   piecewise 

between    points at   
 

,    ,        across the thickness. 

            
              

      
       (2.13)  

where            (    
 
  ) denotes the potential at piezoelectric layer surface/ 

interface,   
       denotes quadratic component of electric potential at    

    
       

and        ,…,   
  with   

      . Also   
    ,   

     are piecewise linear and 

quadratic interpolation functions as: 
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 (  
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            (2.14)  

The axial displacement   can be approximated as: 

                                     (2.15)  

where       is a layerwise function of   of the form: 

         
     

            (2.16)  

where the coefficients   
    

     &    are dependent on the lay-up & material 

properties of the layers and   is number of layer [44]. 
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Free vibration of a flexible beam can be modelled using partial differential Euler-

Bernoulli equation as: 

  ̂   
  

   
        ̂   

 

  
       

  

   
* ̂   

  

   
      +     (2.17)  

where  ̂   ,  ̂    and  ̂    are the mass, damping and stiffness per unit length 

respectively. Solution of the following form can be assumed for this equation: 

                (2.18)  

where   is a spatial function of   variable and   is an eigenvalue of the system. 

Substituting assumed solution in equation of motion gives a differential eigenvalue 

problem as: 

 
   

 

   
       (2.19)  

where      ̂   ̂    ̂. A clamped-free Euler-Bernoulli beam with perfectly bonded 

piezoelectric patches has regions where both piezoelectric and base structure are 

present and regions where only base structure is present. Equation (2.18) can be 

written for both these regions separately [45]. A single piezoelectric patch has very 

less stroke and can apply very less actuation force. Stroke length as well as actuation 

force can be appreciably increased if piezoelectric patches are stacked so as to have a 

more powerful actuator called Piezo Stack Actuator (PSA). PSA can be instrumented 

along links of macro-manipulator for controlling vibration of the macro-manipulator. 

Each flexible link can be considered as an Euler-Bernoulli beam and following partial 

differential equation can be written for transverse motion  : 

 
  

   
(  

        

   
)    

        

   
   (2.20)  

where    is the flexural rigidity of the beam and    is the mass per unit length of the 

beam. Equation of motion of the link can be obtained by multiplying equation (2.20) 

by each mode shape and integrating over length [46]. 

The dynamic motion of flexible beam in transverse vibrations can be formulated by 

using fourth order Partial Differential Equation (PDE) as: 
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       (2.21)  

where   is beam constant represented by    
  

  
 , with         and   representing 

Young’s modulus, moment of inertia, mass density, cross-sectional area and mass of 

the beam respectively. The beam can be discretized into a finite number of equal 

length segments and then by using first-order central Finite Difference (FD) method 

equation of motion (2.21) becomes: 

                  
   

 
       (2.22)  

where        is     matrix which represents the actuating force applied on the 

beam,          ,    is constant time interval,    (           ) is     

matrix which is the deflection of the beam at segments   to   at time step   and   is 

stiffness matrix [47].  

Consider a cantilever beam instrumented with piezoelectric patches as shown in 

figure (2.1). By using the assumed modes method, the flexural deflection can be 

expressed as: 

        ∑           
 

   
 (2.23)  

where    &    denote the     mode shape & the corresponding generalized coordinate 

respectively. 

 

 

 

 

 

 

 
 

Figure 2.1  Cantilever beam instrumented with piezoelectric patches 
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 The charge generated by piezoelectric sensor is expressed as: 

               ∫   
        

   
   

   

   

            (2.24)  

where      is the piezoelectric stress constant of the     piezoelectric sensor,     is the 

width of     piezoelectric sensor,     &     are the locations of the left & right edges 

of the     piezoelectric sensor,    is the distance from the middle of piezoelectric patch 

to the middle of the beam and    is the number of PZT sensors. Using flexural 

deflection as defined in (2.23), the equation of motion of piezoelectric driven beam 

becomes:  

  ̈        ̇    
    

 

    
∑      

 
[ ́ (   )   ́ (   )]

  

   
 (2.25)  

where    is damping ratio,    is natural frequency,    is a constant,    is number of 

PZT actuators,     &     are the locations of the edges of the     actuator,    is the 

mass density,    is cross sectional area of the beam and     is piezoelectric strain 

[48].  

Equation of motion with respect to   direction of a beam carrying a moving mass can 

be expressed as: 
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        ∑        
       

   

 

   

  

(2.26)  

where    is Young’s modulus,   is second moment of area of the beam cross-section, 

 ́ is mass per unit length,   is moving mass,      is Dirac delta function,   is 

velocity of moving mass,   is acceleration due to gravity,       is the position 

distributed function for the      piezoelectric patch,    is constant dependent on the 

piezoelectric elements & the cantilever beam’s structural parameters and       is the 

voltage applied on the     piezoelctric patch [49]. 
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Ionic Polymer Metal Composite (IPMC) actuator can also be used for structural 

vibration control. IPMCs are generally made of nafion, a perfluorinated polymer 

electrolyte, sandwiched in between platinum (or gold) electrodes on both sides. IPMC 

produces large bending moment upon application of relatively low voltage. 

Governing equation of motion of vibratory flexible link instrumented with IPMC 

actuators can be expressed as: 

 
  

   
{         }    

  

   
         (2.27)  

where        is the transverse displacement of the flexible link,      is the beam 

internal bending moment,      is the externally applied distributed bending moment 

from IPMC actuator,   is the motor torque supplied at the hub and    is mass per unit 

length of the flexible link [50]. 

Piezoelectric sandwich beams subjected to large amplitude vibrations can be modelled 

by Partial Deferential Equation (PDE) including non linearity effect of large 

amplitudes. For beam structure transversally excited by harmonic force and 

neglecting the axial displacement, the equation of motion can be expressed as 

nonlinear partial differential equation as: 

 
   ̈                      (  

            )     ̇       

    ̇               ̇        ̇         
(2.28)  

where   are constants dependent on the intelligent structure,      is the resulting 

axial force,   is transverse displacement and    is harmonic force. Using Galerkin’s 

approximation, transverse deflection can be assumed as: 

        ∑   

 

   
         (2.29)  

where       are the free vibration modes of the sandwich beam and       are the 

associated time dependent amplitudes. Based on the one mode assumption and using 

the method of multiple scales, time response of deflection can be obtained [51]. 

Magnetically mounted piezoelectric elements can be used to sense and control 

vibrations of a pinned-free beam subjected to excitation at the base. The equations of 
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axial & lateral motion of the beam and control moments can be derived using 

Hamilton’s principle for coupled electromechanical system as: 

 ∫   (                    )      

  

  

      (2.30)  

where    is kinetic energy of the beam,    is kinetic energy of the magnetic-

piezoelectric control mounts,    is beam’s stored energy,    is potential energy stored 

in control mounts,    is work performed by piezoelectric field on piezoelectric 

element,    is work due to interfacial normal forces,    is work due to interfacial 

tangential forces,      is virtual work due to applied charge    on piezoelectric 

elements and    is the voltage measured across the electrodes [52]. 

When a sensor-actuator pair is not collocated then the system tends to become 

unstable as it has non-minimum-phase zeros. This problem can be addressed if control 

input   is taken proportional to delayed acceleration signal and a low pass filter is 

used to filter out high frequency noise of the sensor signal as in: 

       ̈      
 

   

 

   
 (2.31)  

where   is transverse displacement which is obtained by an experimental 

identification method,   is time interval,    is phase tuning time,   is Laplace 

operator,   &   are the corner frequencies of first order low pass filter and      is 

the proportional gain of acceleration feedback control [53]. 

Piezoelectric fibre with metal core can be embedded in CFRP composite beam for 

sensing as well as controlling the vibrations. If a voltage   is applied to the 

piezoelectric fiber, the strain developed is: 

   
    

    
 (2.32)  

where   is radius of the piezoelectric fibre,    is the radius of the metal core and     is 

piezoelectric coefficient. When the piezoelectric fiber is strained, the sensor voltage    

is given as: 
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           ́   

  
 (2.33)  

where  ́ is the spatial derivative of  ,   is distance between neutral axis & centre of 

piezoelectric fibre,   is length of beam,    is modulus of elasticity of the beam and    

is capacitance of piezoelectric fibre [54].  

2.2.2.  Mathematical model of plate-like structures 

     Consider a plate which has two piezoelectric sheets symmetrically attached to both 

sides of the plate in the centre position. As shown in figure (2.2(a)), this system can 

act as an absorber consisting of piezoelectric material, an inductance and a resistance. 

Where    
  

       
 ,           ,    is the area of piezoelectric material,    is 

thickness of piezoelectric material,    is damping ratio of the absorber,    is 

capacitance of piezoelectric sheet,     is dielectric constant,    is natural frequency, 

   is sensor voltage,    is current in the  absorber and    is voltage at the location of 

the piezo patch. 

 

 

 

 

 

 

Velocity feedback of the main system depresses the frequency sensitivity of the 

absorber and displacement feedback of the main system has insignificant effect. A 

piezoelectric patch instrumented on a host plate can act as a sensor with signal 

conditioning as shown in figure (2.2(b)). The governing equation of the sensor is 

given as: 

 

Figure 2.2 The active absorber and sensor  
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(2.34)  

The output voltage           of the sensor can be expressed in the following form 

in the frequency domain: 

       
     

       
       

     

       
 

     

       
    (2.35)  

where    &    are the additional resistances,    &    are currents,     is capacitance 

proportional to    and    is sensor voltage [55]. 

Following three easily realizable design constraints are sufficient to guarantee the 

asymptotic stability of a piezoelectrically active laminated anisotropic rectangular 

plate: (1) for each piezoelectric actuator laminate above the composite structure mid-

plane there must exist a corresponding identically polarized sensor laminate located 

above the mid-plane, (2) input to the actuator should be proportional to the negative 

of current induced in the corresponding sensor and (3) for each conjugate pair above 

the mid-plane there must exist an identical pair below the mid-plane [56]. 

The dynamic balance equation of a stiffened plate instrumented with Laminated 

Piezoelectric Actuator (LPA) can be written as: 

   

   

   
   

   

   
   

   

      
   

   

   

              

   

   
    

   

   
 

(2.36)  

where   is density of material,    is the equivalent thickness of the smart plate,    & 

   are equivalent stiffness in    &   directions,   is function related to force induced 

by actuator,    is effective torsional rigidity,           is external force and     & 

    are magnitudes of actuation moments per unit voltage. Displacement can be 

written as: 

   ∑ ∑               
 

   

 

   
 (2.37)  
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where     is mode shape and     is transient displacement. Optimal position of LPA 

can be found by optimizing modal control force induced by LPA [57]. Mathematical 

model of cantilevered plate can be derived using finite element technique based on 

Hamilton’s principle. The properties of piezoelectric patches get changed at elevated 

temperature. Therefore new equations containing updated coefficients can be used to 

control vibrations using negative velocity feedback [58]. 

Based on the hypothesis of Kirchhoff’s law the free vibration equation of two-

dimensional rectangular plate is: 

   (
  

   
  

  

      
 

  

   
)            

          

   
   (2.38)  

where          is transverse modal displacement,    
    

       
  

 is flexural rigidity, 

   is Young’s modulus,    is Poisson’s ratio,   is thicknes of the plate,    is density 

of plate material,   &   are the coordinate variables of the plate and   is time variable. 

According to Rayleigh-Ritz method transverse displacement can be written as: 

   ∑ ∑               

 

   

 

   

 (2.39)  

where the subscripts   &   denote the         mode of vibration,          

denotes the modal function of the plate and        denotes the modal coordinate 

[59]. 

For better closed loop performance of smart plate structure it is essential to obtain 

more exact system parameters such as natural modes, damping ratios and modal 

actuation forces. The in-plane displacement through the thickness of composite plate 

with piezoelectric actuators can be estimated better using layerwise plate theory. 

Using layerwise plate theory, displacement fields can be expressed as:  

 

           ∑               
 

   
 

           ∑               
 

   
 

                    

(2.40)  



  

Chapter 2 

Literature review 

 
 

26 
 

where    &    are undetermined coefficients,       is the Lagrangian interpolation 

function through the thickness and   is the number of degrees of freedom for in-plane 

displacement along the thickness. Thereafter refined FE model can be made using 

Hamilton’s principle [60]. 

Functionally Graded Materials (FGM) are microscopically inhomogeneous composite 

materials which exhibit smooth and continuous change of material properties along 

the thickness direction. The effective material properties for a FGM plate using power 

law are given by: 

 

                 

          

    (
    

  
)
 

 

(2.41)  

where     &     are elastic moduli of constituent materials (aluminium & stainless 

steel),     &     are volume functions of constituent materials,    is power law 

index and   is thickness co-ordinate variable. Free vibration analysis of functionally 

graded plate integrated with a piezoelectric layer at the top and bottom faces can be 

done based on finite element method by considering Higher Order Shear deformation 

Theory (HOST) and Van-Karman’s hypothesis [61].  

Finite element method can be used to model a smart plate instrumented with 

piezoelectric patches and stiffened with stiffener. Stiffeners of varying forms need not 

pass along the nodal lines of the finite element mesh and for this stiffener has to be 

expressed in terms of the local coordinates tangential to the stiffener at that point. The 

relationship between the global and local coordinates is as follows: 
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(2.42)  
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where   is angle between   and  ́ axis,   ,    &    are the displacements in global 

coordinates along  ,   &   axis respectively,   
  is displacement along  ́ axis of local 

coordinate,   
  is displacement along  ́ axis of local coordinate and    ,   ,   ́ &   ́ 

are rotations about   axis of global frame,   axis of global frame,  ́ axis of local frame 

&  ́ axis of local frame respectively [62]. 

According to layerwise theory, electric potential is assumed to follow a quadratic 

variation across layers. The electric potential   can be described in terms of surface 

potential    at     
 

 and internal quadratic component   
  at       

    
     ⁄  as: 

              
 
               

      
         (2.43)  

where            and             .   
     and   

     are the piecewise 

linear and quadratic functions, given by: 
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 (2.44)  

where 

   
     {

 (  
     )     

     
      

                       
      

   ⁄

                                                                                                 
 (2.45)  

Piezoelectric Fiber Reinforced Composite (PFRC) materials have high strength, 

toughness, good operating range (               ), long life                      

and conformability to curved surfaces. FE method based on fully coupled efficient 

layer wise theory can be used to model laminated plates equipped with electrode 

monolithic piezoelectric and PFRC sensors & actuators. Electric potential can be 

assumed to follow a quadratic variation across the piezoelectric [63].   

The equation of motion of lamina  , of an N-layers piezoelectric laminated 

rectangular plate in the absence of body forces and free charges is given by. 

      
   

      ̈ 
   

         
   

                          (2.46)  
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where    ,       and    are the components of the Cauchy’s stress tensor, 

displacement vector, mass density and electric displacement vector respectively. A 

semi inverse solution can be assumed for displacement and electric potential as: 

 

  
    

      
          

  
    

      
          

  
    

      
          

          
          

(2.47)  

where    is position in   direction,   is angular frequency,   is time instant,    is 

position of material surface in vertical direction,    are coefficients,   is electrical 

potential,   is a particular layer,   
  

 
 is a constant,   is length of piezoelectric plate 

and   is a non negative integer. Substituting in constitutive equation of 

piezoelectricity we get four coupled second-order ordinary differential equations for 

  
      and       . A power series solution can be assumed for   

      and        

[64]. 

2.2.3.  Mathematical model of shells and complex structures 

     Usually isoparametric hexahedron solid element is used in the finite element 

modelling and analysis of smart piezoelectric plate structures. When the piezoelectric 

patch is two to three order thinner than the master structure it is inefficient to use the 

conventional isoparametric hexahedron solid element because excessive shear strain 

energy gets stored in the element and in the stiffness coefficients in the thickness 

direction. This problem can be overcome by introducing internal Degree of Freedoms 

(DOFs) in the enthalpy equation while applying Hamilton’s principle. Displacement 

interpolation now becomes: 

 { }  [  ]{  }     {  } (2.48)  

where      is the extra mode shape function matrix for the added internal DOFs 

{  }  [  ] is the shape function matrix and {  } is the nodal displacement vector. 

Guyan reduction scheme can then be used to condense internal DOFs [65]. 
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Multi-layer piezoelectric actuator (MPA) consists of   identical piezoelectric patches 

polarized along the normal direction and bonded together through the surfaces with 

the same polarity. Each piezoelectric patch of MPA is applied with identical control 

voltage. MPA generates greater actuation forces on controlled structure through in-

plane deformations of all piezoelectric patches than a single piezoelectric patch 

actuator. MPA can be instrumented on a Honeycomb Sandwich Panel (HSP) and the 

displacement function of this laminated structure can be given as: 

 

               
  

 [             (     )]
     

  

  
  

                
  

 [             (     )]
     

  

  
  

           

(2.49)  

where      &   are the displacements in the      &   directions respectively,    & 

    are the rotation angles about the   &   axis respectively,   is number of layers,   

is half-thickness of the honeycomb core,   is thickness of the faceplates,     &    are 

the thickness of single piezoelectric patch of single adhesive layer,   is the time 

argument and           is the third-order Heaviside function associated with location 

of the MPA. Thereafter, Hamilton’s principle can be used to yield governing 

equations of motion [66].  Vibration and radiated sound of a ring-stiffened circular 

cylindrical shell can be suppressed using piezoelectric sensor and actuator. To derive 

the mathematical model of the system, mass & stiffness matrices of ring stiffeners 

needs to be added to the mass & stiffness matrices of the cylindrical shell respectively 

[67]. A clamped aluminium rectangular plate (length along horizontal axis and width 

along vertical axis) carrying a cylindrical fluid filled tank, mimics an aircraft wing. 

Two Polyvinylidene Fluoride (PVDF) sensors and two piezoelectric actuators can be 

instrumented at clamped end of this plate to control the vibrations of this plate. This 

system can be modelled using partial defferential equations of the plate, liquid 

continuity condition and equation of liquid motion. Plate can be modelled using 

following equation: 

   

   

   
     

  

  
     

   
    

   
 

    

   
 (2.50)  
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where            is the transverse displacement,       is an operator quantifying 

the damping,     is the mass per unit plate area,   is Young’s modulus,   is moment 

of inertia of the plate and    &    are external moments along   &   axis 

respectively. Longitudinal movement of the liquid in the tank along the   axis can be 

modelled using equation of liquid continuity based on Bernoulli’s equation of liquid 

motion as: 

 

  

  
 

 

 
              

   

   
 

   

   
 

   

   
   

(2.51)  

where   is the velocity potential,    stands for acceleration along  -axis,   is 

gravitational acceleration,   is liquid height in the container at rest position,    is the 

density of the liquid and   is the pressure in the liquid [68]. 

Piezoelectric stack-actuator can be attached along the axis of the columns and at 

parallel offset. In this configuration, piezostack actuator applies moments on the 

column when actuated by an electrical voltage. Vibrations of a frame built by columns 

can be controlled by using stack actuators fixed in the manner as explained [69]. A 

Stewart platform mechanism is a six DOF parallel manipulator, connected to a fixed 

base plate and a moving plate. The legs of the platform can be made of piezostack 

actuator and a collocated force sensor. The equation of the Stewart platform can be 

written as: 

   ̈           (2.52)  

where   is the inertia matrix,   is the stiffness matrix,   is the disturbance force,   is 

displacement vector,   is the control influence matrix of the active structure,   is the 

axial stiffness of the active strut and   is the unconstrained piezoelectric expansion 

[70].   

2.3. Optimal placement of sensors and actuators over a structure 

     Depending on desired optimization criterion, different optimization techniques can 

be suitably employed to find the optimal placement of sensors/actuators over a 
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structure. A pair of sensor and actuator should be collocated to avoid the risk of 

hysteresis problem and instability of the system. In collocated arrangement a sensor 

and an actuator have to be placed in same position but in opposite side of structure. 

Some of the popular optimal placement methods which have been used in AVC are 

discussed in subsequent paragraphs. 

     Genetic algorithms are search procedures based on the mechanics of natural 

selection, the total number of possible combination of actuator locations, the 

performance criteria, the number of controlled modes etc. A genetic algorithm is 

powerful random search method guided by fitness function which may be used to 

detect efficient location for discrete sensor and actuator location over an intelligent 

structure for active vibration control. Global optimal sensor and actuator locations can 

be obtained over a base structure with few generations using a half and quarter 

chromosome technique. Minimization of the linear quadratic index can be used as an 

objective function to locate piezoelectric actuators and attenuate first six modes of 

vibration. This technique gives 99.99% reduction in genetic algorithm search space 

and 97.8% reduction in computer calculations compared to conventional full-length 

chromosome [71]. 

Genetic Algorithm along with developed optimization techniques can be used to find 

the optimal location of piezoelectric actuator over all clamped edges of plate. 

Developed optimization technique is employed to find location in such a manner that 

the performance index is extremized. In order to propose the performance criterion for 

sensor/actuator locations, the energy spent can be used as: 

                ∫            
  

 

  (2.53)  

where   is control effort. Steady state controllability Grammian can be obtained using 

Lyapuanov’s equation as: 

                       (2.54)  

where   is system matrix,   is control matrix,   is the control input and      is 

steady state controllability grammian. Location of both sensors and actuators can be 

determined with consideration of controllability, observability and spillover 

prevention [72]. 
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Following index can be developed based on Frequency Response Function (FRF) of 

an intelligent structure for controllability assessment in case of a structure with 

uncertainties. 
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(2.55)  

where        is the transfer function from the     piezoelectric actuator to      PVDF 

sensor response,         is residue of FRF caused by parameter variation,       is 

the residue of FRF caused by higher order modes,     is natural frequency and     is 

damping ratio [73]. 

An optimal placement technique can be developed based on degree of controllability 

and observability to determine optimal location of piezoelectric patches over the 

aluminium cantilever plate. By maximizing the degree of controllability and 

observability based on sensor signal equation and actuator force equation modal 

vibrations can be controlled. The electrical current for     sensor can be expressed as: 

      ∬      

   

     
     

   

     
     

   

       

    (2.56)  

where    is distance between the middle plane of the     sensor & edge of the plate, 

           &        are piezoelectric constants of     piezoelectric sensor,   is 

transverse modal displacement,   is area of piezoelectric patch,   &   are coordinates 

of sensor over the structure and   is time variable. Actuator moments applied by     

piezoelectric actuator in both   &   directions are equal and can be evaluated as: 

 

                     , 

                                        
(2.57)  

where    &    are coordinates of one corner of piezoelectric patch,    &    are 

coordinates of opposite corner,    is coefficient of     piezoelectric actuator and   is 
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Heaviside function. The spillover problem can be solved by passing sensor signal 

through second order Butterworth filter [59]. 

Collocated piezoelectric sensor/actuator pair can be optimally placed over the flexible 

cantilevered steel beam using Linear Quadratic Regulator (LQR) controller. Objective 

function can be derived based on LQR problem to minimize vibration energy as: 

                          (2.58)  

where       denotes trace function of matrix,    is optimal location of sensor/actuator 

pairs among possible   locations and       is related to piezoelectric force vector. 

Then genetic algorithm can be used to find solution for       [74]. 

AVC study can be made on pedestrian structure to find optimal placement of 

sensors/actuators and control gains simultaneously. The performance index can be 

developed in such a way that all practical parameters are considered. The objective 

function is defined as: 

                  
 

 
∫    

               
  

 

    (2.59)  

where   is control gain matrix,    represents all possible locations of sensors & 

actuators,      is weight matrix related to state of system,   is       positive 

definite matrix and   is simulation time [75]. 

In AVC, solutions of Generalized Control Algebraic Riccati Equation (GCARE) and 

Generalized Filtering Algebraic Riccati Equation (GFARE) can be employed to find 

the optimal location of collocated sensors/actuators pair over the un-damped flexible 

structure. These two equations are solution of    controller based on the normalized 

coprime factorization approach. The optimal location of sensors/actuators will be 

fulfilled by minimizing close loop    as: 

                     (2.60)  

where   is output matrix and   is controllability grammian of closed loop system. 

This approach requires solution of complex Riccati equation [76].  
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Vibrations can be controlled by dissipating energy of structure using optimal 

placement of actuators. Piezoelectric sensors/actuators location over a truss can be 

determined by developing an objective function based on maximization of dissipation 

energy. In order to determine the optimal placement of sensors and actuators over 

truss structure total energy dissipated can be formulated as [77]:  

   {    } ∫         {    }
 

 

 (2.61)  

where   is time interval,      is structural displacement vector,   is system matrix and 

  is described as: 

   [
  ̅  

    
] (2.62)  

Objective function can be formulated as: 

           (2.63)  

matrix     is a solution of following Lyapunov equation: 

                  (2.64)  

2.4. Control techniques for active vibration control 

     After creating a mathematical model of the smart structure instrumented with 

optimally placed sensors and actuators, one needs to apply a suitable control law. In 

following pages some control techniques which have been used in AVC are 

discussed. Negative velocity feedback can control vibrations of the sandwich beam 

with flexible core using piezoelectric patches. Using closed loop feedback control, the 

electric potential applied on the    electrode actuator can be expressed as: 

        ̇     (2.65)  

where     is displacement signal of     sensor and    is control gain [78].  

In order to solve the nonlinear differential equations for the dynamic analysis, 

Newmark direct integration method together with the modified Newton-Raphson 
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method can be utilized. First, the time derivations are approximated by employing the 

implicit time integration scheme of Newmark method with        and        . In 

the next step, the modified Newton-Raphson method can be used to solve the obtained 

system of non-linear algebraic equations [79]. 

A control law using negative feedback can be defined to control the first mode of the 

cantilevered smart piezoelectric structure. For controlling the first mode using 

negative first modal velocity feedback, the control voltage is given as: 

      
  ̇

         
   [ ̅  

 ] 
 (2.66)  

where  ̇ is modal velocity and is estimated using a Kalman observer,     
   is 

electromechanical interaction matrix and [ ̅  
 ] is change in the electromechanical 

interaction matrix when temperature is other than ‘reference temperature’. 

Piezoelectric coefficient     and permittivity of PZT-5H piezoelectric change with 

change in temperature. Vibrations sensed by PZT-5H piezoelectric patch and 

actuation forces applied by PZT-5H piezoelectric patch would be wrongly predicted if 

this variation is ignored [80]. 

In optimal control, control gains are taken such that following performance index is 

maximized: 

   
 

 
∫                          

 

 

 (2.67)  

where      is state vector,      is control vector,   is displacement weighing matrix 

and   is control weighing matrix. Optimal control law is defined as: 

             (2.68)  

where          is gain of controller and   is solution of following Riccati 

equation: 

                       (2.69)  

where   &   are system & control matrices of state space model respectively. 

Compared with Linear Quadratic Gaussian (LQG) control method, robust    control 

https://en.wikipedia.org/wiki/Linear-quadratic-Gaussian_control
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has strong robustness to variations in modal parameters. In case full states of system 

are not available, the states can be estimated by a Kalman filter [81]. 

Sound radiated from a rectangular plate can be controlled by manipulating line 

moments applied on the plate. Control voltage obtained by minimizing the radiated 

sound power is: 

      ⃗   ⃗    ⃗   ⃗⃗   (2.70)  

where  ⃗ is the velocity response of unit applied voltage, superscript   denotes 

Hermitian transpose and   is positive definite matrix. The total velocity of the plate is 

given by: 

  ⃗⃗   ⃗⃗   ⃗   (2.71)  

where  ⃗⃗  is velocity distribution due to line moment and   is control signal. The 

optimal complex control signal can also be found by setting the value of net complex 

volume velocity to zero. This gives control voltage as: 

   
   ⃗⃗ 

  ⃗
 (2.72)  

where    is the elemental area [82]. 

Filtered Velocity Feedback (FVF) control can be used to stabilize a control system 

with non-collocated sensor/moment pair actuator configuration. Since sensor/actuator 

pair is in non-collocated configuration, the system faces instability at high 

frequencies. FVF controller can solve the instability problem due to high frequencies 

by using second order filter characteristics similar to a low pass filter, the FVF 

equation can be expressed as:- 

  ̈        ̇    
       

   (2.73)  

where    is the damping ratio,    is the cut-off frequency of the controller,    is 

response of the controller and    is output signal of velocity sensor. The control signal 

is obtained as: 

             (2.74)  
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where   is the feedback gain,      is transfer function of FVF controller and    is 

controlled velocity at sensor location [83]. 

As shown in figure (2.3), feed-forward controller with filtered-X LMS algorithm can 

be used to control structural vibrations where signal related to disturbance is 

available. 

 

 

 

 

 

 

 

      &       are transfer functions of primary & secondary paths,      is FIR filter, 

     is controller,      is vibration signal,      is source reference signal,      is an 

error signal and               . The control output      is expressed as: 

      ∑         
   

   
 (2.75)  

where    are coefficients of the FIR control filter     , which are calculated using 

the gradient descent algorithm. An adaptive controller based on filtered-X Least Mean 

Square (LMS) algorithm can be used to attenuate vibrations of piezoelectric Stewart 

platform whose each leg consists of a variable-length piezoelectric actuator and a 

collocated force sensor [84]. 

The proportional type Iterative Learning (IL) algorithm is an intelligent strategy 

through which the performance of a dynamical system becomes better and better as 

time increases. In proportional type IL algorithm, the input signal      and output 

signal      are stored in memory each time the system operates. The learning 

algorithm then evaluates the system performance error        ̅   -     , where 

 

Figure 2.3 Feed forward controller with filtered X-LMS algorithm 
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 ̅    is the desired output of the system and      is the actual output. Based on this 

error signal the learning algorithm then computes a new input signal        in such 

a way that it causes the performance error to be reduced on the next trial or iteration. 

An intelligent proportional controller based on displacement feedback can be 

employed to control vibratory response of a flexible plate system [85]. 

Piezoelectric actuator can be used as an isolator for damping vibrations of a 

suspended mass. Piezoelectric actuators exhibit non-linear behaviour due to 

hysteresis. The non linear behaviour can be expressed using Bouc-Wen formula as: 

     
 

 
        (2.76)  

where     is nonlinear voltage developed across piezoelectric patch,   is charge on 

piezoelectric capacitor,   is capacitance of piezoelectric patch and        is a 

perturbation describing the hysteretic behaviour. The piezoelectric actuator can be 

linearized by using compensated input voltage as: 

       ̇   (
 

 ́
 

 

 
) (2.77)  

where   is a positive constant,   is displacement of the platform,  ́ is non-linear 

capacitance of actuator and   is linear capacitance of actuator. A nonlinear 

compensator can be used for improving the standard skyhook control strategy in a 

piezoelectric based damper [86]. 

A general discrete multi variable linear system can be expressed in the state space 

format as: 

 
                   

                 
(2.78)  

where   is state vector,   is control vector,   is output vector and matrices       & 

  are state, control, output & sensor influence matrices respectively. The input-output 

description of the above system can be written as: 

      ∑                 
   

   
 (2.79)  
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where         together with   are known as the Markov parameters of the 

system. Markov parameters can be determined by using Observer/Kalman filter 

Identification technique (OKID). State-space model of the system can be constructed 

from the system Markov parameters by using Eigenvalue Realization Algorithm 

(ERA) [87]. 

Flexible beam can be actively controlled using a mode based digital controller. The 

input-output description of the system with zero initial condition can be written as: 

      ∑                
   

   
 (2.80)  

where    &   are the Markov parameters of the system,   is input vector and   is the 

time interval. A Kalman observer can be created to observe states of the system. A 

standard recursive least square technique can be used to compute Markov parameters 

of the observer. Markov parameters of the system can be computed from the Markov 

parameters of the observer. The state space model of system can be determined using 

Eigen system Realization Algorithm (ERA). The model can then be used in LQR 

controller to control modes of vibration [88]. 

Virtual energy absorption of the piezoelectric patch actuator can define optimal 

feedback gain where the active damping effect could be maximized. Maximizing the 

virtual energy absorption is approximately equivalent to minimizing the kinetic 

energy. Multi-channel robust self-tuning algorithm based on maximizing the virtual 

energy absorption can update feedback gains of more than one control unit at a time. 

The energy absorption of each control unit can be written as: 

    
 

 
  

   

  
  |   |

  
 

 
  |   |

  (2.81)  

where     is piezoelectric material strain constant,    is the feedback gain of      

control unit,     is the velocity signal at the      velocity sensor,   is a constant,     is 

thickness of piezoelectric patch actuator and    is a constant determined by the 

characteristics of the piezoelectric patch actuator & size of plate [89]. 

An online disturbance state-filter can be constructed for the suppression of multiple 

unknown and time–varying vibrations of variable frequency air-conditioned system. 
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A state observer estimates the load torque disturbance. Motor torque command of 

compressor motor can be manipulated to control the structural vibrations of an air 

conditioner, considering load as disturbance and can be estimated based on motor 

speed & motor position. Estimated disturbance can be added to the torque command 

in feed forward manner to control structural vibrations [90]. 

A structure subjected to a constant follower force may undergo flutter instability. For 

a parametrically excited system, follower force is given by: 

                   (2.82)  

where    &    are forces and     is driving frequency. The smart plate can be 

modelled using first-order shear deformation theory and Hamilton’s principle. The 

ratio of the imaginary part to the real part of frequency is called the true damping ratio 

and the magnitude of that characterizes the intensity of the flutter instability. System 

is dynamically unstable if ratio of imaginary part of frequency to real part of 

frequency is less than zero [91].  

Noise can be reduced in high speed Switch Reluctance variable Motor (SRM) by 

using active SRM. Structural vibrations sensed by an accelerometer can be 

manipulated and used to generate a control signal for two piezoelectric bar actuators 

located on the stator boundary layer. Typical filter transfer function for this purpose 

can be taken as: 

             

 
    

       
 

    
 

 
    

 (2.83)  

where      is resonance ferequency,      is modal mass,      is constant of the 

filter and   is Laplace operator. Dedicated     filter can be designed for increasing 

damping ratio of a particular mode [92]. 

Fuzzy logic based Independent Modal Space Control (IMSC) and fuzzy logic based 

Modified Independent Modal Space Control (MIMSC) can be used to control the 

vibrations of a plate. First two modal displacements & velocities of the structure can 

be taken as input and output variables of the fuzzy controller can be taken as the 
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modal force to be applied by the actuator. According to IMSC the modal force can be 

obtained as: 

 

   (   
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)  
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(2.84)  

where       and    represent the modal displacement, modal control force and 

modal frequency respectively of     mode.    is a factor that weighs the importance 

of minimizing the vibration with respect to the control forces [93].  

To do fuzzification input and output variables of controller have to be designed with 

relevant range, which each input variable can take and the safe range which each 

output variable should have. The rules for active vibration control can be generated in 

the modal domain. Self-tuning fuzzy logic controller can be utilized to control 

vibrations of a thin walled composite beam integrated with piezoelectric sensor and 

actuator. In Fuzzy Logic Control (FLC) linguistic rules are used as a base for control 

by incorporating human expertise into the fuzzy If-Then rules. Commonly used fuzzy 

control method is the Mamdani method, where     rule is written as: 

                                           (2.85)  

where    &    present the input variables,   is output variable and       &    are the 

linguistic values of fuzzy variables. In general FLC consists of three principle 

elements: fuzzification, rules base generation and defuzzification. In fuzzification 

fuzzy sets are defined over variables and in defuzzification crisp values are obtained 

from fuzzy output variables. Rule base is a collection of ‘if-then’ rules based upon 

human reasoning. Modal displacement   & modal velocity  ̇ can be taken as input 

variables and output variable can be taken as voltage to be applied on the actuator. 

Since the universe of discourse of the input variables is in range       , the scaling 

factors    and    can be  chosen in such a way that they transform the input variables 

from the sensor to the fuzzy controller to range       . Scaling factors can be taken 

as: 
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(2.86)  

where      and  ̇     are maximum amplitudes of modal displacement and modal 

velocity respectively. Performance and robustness of the FLC controller can be 

improved by adjusting the scaling factor using peak observer and by optimizing the 

membership functions using Particle Swarm Optimization (PSO) algorithm [94]. 

 A nonlinear controller based on fuzzy logic controller-Mamdani type can be designed 

to control vibrations of smart thin elastic rectangular plate. Displacement of a plate 

structure can be written in the form of a double Fourier’s series with the time-

dependent coefficients as: 

          ∑               

 

     

 (2.87)  

where      are Fourier coefficients and     are the global basis function chosen to 

match the boundary conditions. Controlling force can be calculated by using a fuzzy 

logic control with displacement & velocity as input and control force as output [95]. 

Fuzzy logic meshed with sliding mode can be used to control vibrations of half 

vehicle model having nonlinearity in actuator and uncertainties in sprung mass of 

front wheel, un-sprung mass & rear wheel un-sprung mass. Based upon instantaneous 

values of sprung mass and un-sprung masses, eight state space models of vehicle can 

be created. Then suitable rule base can be created by using If-Then rules. Thereafter 

an integral type sliding-surface function can be chosen as: 

 

            ∫   ̅
 

 

       

 ̅  ∑ ∑              
 

   

 

   
 

(2.88)  

where    &    are the fuzzy weights,    &    are the system matrices of state space 

model,   is a constant matrix to be designed satisfying condition that     is non-

singular and                    is the state feedback gain matrix to be designed. 

Control law can be taken as: 



Chapter 2 

Literature review 

 
 

43 
 

      ∑          ̂            

 

   

   (2.89)  

where    is fuzzy weight function,    is the state feedback gain matrix and  ̂    

    ̂‖(    )‖,     is sign function, parameter updating law is 

 ̂       ‖    ‖‖    ‖ and      is switching function. Takagi-Sugeno (TS) fuzzy 

approach can be used to compute      [96]. 

2.5. Gaps in literature 

     Lot of work has been done to control the vibrations of static and dynamic 

structures. Different controllers, sensors and actuators have been tested but still they 

are not that much efficient to control vibrations effectively. Most of the proposed 

methods in research area are not applicable in practical cases. Following gaps in 

literature are visible:  

i. There is no work in literature in which a time varying non-zero vibration 

reference signal has been tracked.  

ii. Concept of AVC has not been employed for vibration testing. 

iii. There is very less work in literature in which concept of active vibration control 

has been applied on complex structures. 

iv. There is limited work in literature in which performance of an actively 

controlled structure has been checked in complex real life environment. 

v. Piezoelectric actuators get fatigued with time. There is no work in literature in 

which age of piezoelectric sensors and actuators has been considered in the 

performance of the intelligent structure. 

vi. There is no work in which a piezoelectric actuator has been used in shear 

mode and bending mode simultaneously. 

vii. An actively controlled structure is prone to structural changes due to 

interaction with the environment. To tackle this, the adaptive controller is 

needed. No research work is available in this direction. 

viii. An actively controlled structure may have several sensors and actuators. Some 

of these sensors or/and actuators may fail while the intelligent structures is in 
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use. This failure has not been analysed in terms of damage to structure, 

vibration levels and energy consumption etc.  

ix. An actively controlled structure can fail due to several reasons. Therefore the 

intelligent structure should also be passively controlled in an optimal manner. 

Such a hybrid structure has not been analysed. 

x. Actively controlled structures are projected for use in space structures in 

which ambient air flows with appreciable speed. This air can charge the 

piezoelectric patches. This charging of the piezoelectric patch by ambient air 

has not been analysed in literature. 

xi. In many applications, signal proportional to disturbance may be available in 

the structure and the structure may be experiencing transient disturbances also. 

Such structure requires feedback as well as feed-forward control. Such a 

scenario has not been considered. 

 

2.6. Present work 

     Once a structure has been constructed for desired dynamic characteristics using 

PVC and/or AVC techniques, the performance of the structure should be thoroughly 

checked. Only after successful laboratory tests, the structure is fit to be put for its 

intended use in real life environment. Different types of lab test are available so as to 

check dynamic characteristics of the test structure. A simple ‘Rap test’ followed by 

Fourier transform can be used to find actual natural frequencies and damping ratios. 

Actual mode shapes of the test-structure can be extracted from an experiment 

performed using an instrumented hammer. The structure can be mounted on a 

vibration shaker and subjected to different harmonic excitations so as to check its 

dynamic strength. The performance of the structure can be observed in the lab by 

subjecting it to dynamic loads similar to those occurring in real-life environment 

conditions. In real world environment conditions, a structure may be subjected to 

several loads simultaneously. Ideally, a test structure should be tested in the lab by 

subjecting the test structure to these several loads simultaneously. This testing is 

difficult because: all the loads need to be identified, some of the loads may be 

complex in nature and simultaneous application of all the loads on a test structure may 
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require extensive experimental setup. On the other hand, it is very simple to measure 

actual vibrations being experienced by the structure in a real-life environment.  

     Present work proposes a novel technique to test a structure in the laboratory before 

the structure is put to use in the field. There is no work in which test structure has 

been made to experience transient vibrations in the laboratory which the structure 

actually experiences in the field. Present work proposes that the test structure should 

be made to track transient vibrations in the laboratory which it would have 

experienced in the field. In present work, optimal tracking control strategy has been 

used successfully to track first three vibration modes of a cantilevered plate 

instrumented with piezoelectric sensor and actuator patches. Objectives of present 

work are listed as: 

i To create a mathematical model of a smart cantilevered plate instrumented 

with piezoelectric sensor and actuator patches. 

ii To develop an optimal controller to track first three vibration modes of 

cantilevered plate. 

iii To simulate tracking of first three modes of the structure using MATLAB 

software. 

iv Experimentally track first three modes of the structure using Labview 

software. 

 

2.7. Plan of work 

    In chapter 3 mathematical model of cantilevered plate instrumented with sensor and 

actuator patches is developed using MATLAB software. In this chapter mathematical 

model using finite element technique based on Hamilton’s principle is developed for a 

mild-steel plate instrumented with piezoelectric patches. The model is reduced to first 

three modes using orthonormal truncation method. Then truncated model is converted 

to a state space model. In chapter 4 the concept of Kalman filter is explained. Kalman 

observer is required to estimate states of system during experiments. In chapter 5, 

optimal tracking control is developed to track modes of vibration. In this chapter 

optimal control based on Riccati equation has been derived to track first three modes 

of vibration simultaneously. Then Kalman observer is constructed to estimate all the 
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states of the state-space model. In chapters 6 & 7 simulation and experimental results 

of this work are discussed in detail. In these chapters simulation results are obtained 

using MATLAB software, for tracking first two modes and first three modes of plate. 

Reference signals of plate are obtained by applying impulse signal on the 

piezoelectric actuator patch. Then optimal controller is developed to track vibration 

modes simultaneously. Experiments are conducted to track first three vibration modes 

of the smart plate simultaneously using LabView software. In chapter 8 conclusions 

are drawn and future scope of this work are discussed.  

2.8. Conclusions: 

     In this chapter comprehensive review (over 100 papers) has been done of 

intelligent structures. The literature survey on active vibration control has been 

classified as: mathematical modelling of structures (beam like, plate-like & shell-like 

and complex), optimal placement of sensors/actuators and control laws. Based on this 

comprehensive study, gaps in literature have been identified. Thereafter scope of 

work and organisation of present work have been discussed in detail. 
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Chapter 3: Mathematical model of a cantilevered 

plate structure 

3.1. Introduction 

    Mathematical model of an active structure is required for implementing an Active 

Vibration Control (AVC) scheme. Finite element techniques [97] and experimental 

modal analysis [98] have been used frequently in AVC applications. Mathematical 

equation of beam can be derived using Lagrangian theory [99], Kirchhoff theory [100], 

Euler-Bernoulli beam theory [101] etc. In active vibration control mathematical model of 

composite structure, hybrid structure, sandwich structure and multilayer structures can be 

carried out using Classical theories [102], First order Shear Deformation Theory (FSDT) 

[103], Third Order Theory (TOT) [104], High order Shear deformation theory [105], 

layerwise displacement theory [106], Reddy theory [107] etc. Using these methods 

displacement variables are calculated through the thickness for all the layers, with 

different material properties of the layers. Equilibrium equations, Von-karman theory, 

direct numerical integration method also can be utilized while making mathematical 

model of structures. Finite element techniques have been extensively used to express the 

mathematical model of structures. Finite element techniques have been used based on 

Hamilton’s principle [108], Galerkin approach [109], Rayleigh-Ritz theory [110] and 

Hooke’s law [111]. After extracting the equations of motion of structures in terms of 

differential equations, model can be reduced to smaller order using modal truncation. 

Generally mathematical model of structures are created using physical specifications of 

structure (mass, stiffness and damping). It has been shown that environment effects also 

can change the equations of motion. Thermal effect [112], electric-field effect [113], 

hygro effect [114], magnetic field effect [115] can be incorporated in mathematical 

model of structures.  

     In this chapter, mathematical model of a cantilevered plate instrumented with 

piezoelectric patches is developed. Many real life structures are in the shape of a 

cantilevered plate such as satellite structures, aircraft wings, wind turbine blades etc. 
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Piezoelectric patches are used extensively in active vibration control as sensors and 

actuators. Finite element techniques have emerged as confident techniques to model 

dynamics of mechanical structures. Finite element method based on Hamilton’s principle 

is used in this work to find the dynamic equations of structure. Application of Hamilton’s 

principle for developing mathematical model of a simple two degree of freedom system 

is illustrated in section 3.2. In section 3.3, a cantilevered plate is considered and 

expression is derived for Lagrangian of the system. In section 3.4, equations of motion of 

the smart plate are derived using Hamilton’s principle. Equations of motion are 

decoupled using modal analysis in section 3.5 and finally in section 3.6 decoupled 

equations of motion are used to create a state-space model of the system. 

3.2. Illustration of Hamilton’s principle via a simple two degree of freedom system 

     Let us try to write equations of motion of a simple two degrees of freedom system as 

shown in figure (3.1). Mass       is connected to a boundary through a spring      and is 

connected to mass       through a spring      . Similarly, mass       is connected to a 

boundary through a spring       and is connected to mass      through a spring     . 

 

 

 

 

 

According to Hamilton’s principle, 

  ∫          
  

  

 (3.1)  

where     is kinetic energy and     is potential energy of the system at an instant of time. 

Time instants    and    are arbitrarily chosen. Kinetic energy of the system displayed in 

figure (3.1) can be expressed as: 

   
 

 
   ̇ 

  
 

 
   ̇ 

  (3.2)  

potential energy of the system can be expressed as: 

 
Figure 3.1 Two degrees of freedom spring-mass system 
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  (3.3)  

applying variation operator on the kinetic and potential energy expressions, we have: 
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(3.4)  

substituting in equation (3.1), 
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   (3.5)  

this can be rewritten as: 
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(3.6)  

at time instants    and    variations in displacement are zero, therefore: 
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so now equation (3.5) can be written as: 
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)     ( 

 

  
(
  

  ̇ 
)  

  

   
)    ]

  

  

     (3.8)  

above equation will be satisfied if coefficients of    and     are zero, i.e. 

  
 

  
(
  

  ̇ 
)  

  

   
   (3.9)  

and 

  
 

  
(
  

  ̇ 
)  

  

   
   (3.10)  

again considering equations (3.2) and (3.3), we have: 

 

  

  ̇ 
    ̇   

 
  

  ̇ 
    ̇  

(3.11)  

and 
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(3.12)  

equations of motion are finally obtained as under by making these substitution in 

equations (3.9) and (3.10). 

 
    ̈                   

    ̈                   
(3.13)  

or,  

 
    ̈                   

    ̈                   
(3.14)  

These equations can be verified by obtaining equations of motion form free-body 

diagrams. The free-body diagrams of the two masses can be written as: 

 

 

 

 

 

 

From these free body diagrams equations of motions are obtained as: 

 

   ̈                   

and 

   ̈                   

(3.15)  

Above two equations are same as equations (3.14) which have been derived using 

Hamilton’s principle. So, for deriving equations of motion using Hamilton’s principle 

one has to simply substitute expressions of kinetic energy and potential energy in 

Hamilton’s principle. For deriving equations of motion using free body diagrams one has 

to draw free-body diagrams and balance forces. Derivation of equations of motion using 

free-body diagrams is suitable for simple problems and Hamilton’s principle approach 

has been found apt for complex problems & continuous structures. Mathematical 

modeling technique via Hamilton’s principle that has been illustrated here for a simple 

 

Figure 3.2 Free-body diagrams of two degree of freedom spring-mass system 
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discrete system will now be exploited to model a continuous plate structure in following 

sections. 

3.3. Finite element model of a smart plate 

     Consider a thin cantilevered mild-steel plate of size          , as shown in  

figure (3.3). This plate is discretized into      equal elements of size        . One 

piezoelectric sensor patch is pasted at      element and one piezoelectric patch is pasted 

at       element.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Quadrilateral plate element, as shown in figure (3.4), with four node points is used for 

finite element modeling. Six degrees of freedom are possible at each node. Three degrees 

of freedom have been considered at each node as: 

 

            displacement normal to the plane of the plate 

    
  

  
  rotation about   axis 

   
  

  
 rotation about   axis 

 At the piezoelectric patch location, the structure is composite with one layer of mild steel 

and one piezoelectric layer. Constitutive equations of piezoelectricity can be written as: 

 

Figure 3.3 Cantilevered plate 
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{ }  [ ]{ }  [ ]{ } 

{ }  [  ]{ }  [ ] { } 
(3.16)  

where  ,  ,   &   are the electric displacement, electric field, strain and stress vectors 

respectively.   ,   and   are the elasticity, piezoelectric constant and dielectric constant 

matrices respectively. For elastic material of the base structure the constitutive equation 

is: 

 { }  [  ]{ } (3.17)  

where    is the elasticity constant matrix of the main structure.  

 

 

 

 

 

 

 

 

 

The normal displacement   can be expressed in terms of nodal displacements as: 

 
  [        ]{ 

 } 

 [ ]{  } 
(3.18)  

where          &    are shape functions and {  } is a vector of elemental degrees of 

freedom which is given by: 

 {  }  [                       ] (3.19)  

strain vector can be expressed as function of nodal displacements as: 

 { }   

{
  
 

  
  

   

   

 
   

   

  
   

    }
  
 

  
 

 (3.20)  

substituting (3.18) in (3.20) we have: 

 

Figure 3.4 Quadrilateral plate element 
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 { }   

{
  
 

  
  

  

   

 
  

   

  
  

    }
  
 

  
 

[ ]{  } (3.21)  

taking  

 [  ]  

{
  
 

  
  

  

   

 
  

   

  
  

    }
  
 

  
 

[ ]  

we have, 

 { }   [  ]{ 
 } (3.22)  

In present case electric voltage is applied only perpendicular to the plane of the 

piezoelectric patch, therefore electrical field vector becomes: 

 { }   {

 
 
 

  

}    {  }  (3.23)  

where   is voltage applied across the piezoelectric patch and    is thickness of 

piezoelectric patch. Total kinetic energy of one finite element can be written as: 

    
 

 
∫    ̇

   
  

 ∫    ̇
   

  

 (3.24)  

where   is density and subscripts   &   refer to main structure & piezoelectric structure 

respectively. Total potential energy of one finite element can be written as: 

    
 

 
∫ { } { }  
  

 
 

 
∫ { } { }  
  

 (3.25)  

The electrostatic potential energy stored in one element is: 

       
 

 
∫ { } { }  
  

 (3.26)  

Sum of energy stored by the surface force and the energy required to apply surface 
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electrical charge on piezoelectric is: 

      ∫ { } {  
 }   

  

 ∫      
  

 (3.27)  

where {  
 } is the surface force vector,   is applied surface electrical charge density and 

   &    are surface area of plate & surface area of piezoelectric patch respectively. 

Lagrangian for one finite element of plate is: 

                      (3.28)  

after substituting the values of kinetic energy, potential energy and work done by one 

element the Lagrangian becomes:  

 

  (
 

 
∫    ̇

   
  

 ∫    ̇
   

  

) 

 (
 

 
∫ { } { }  
  

 
 

 
∫ { } { }  
  

) 

 (
 

 
∫ { } { }  
  

 ∫ { } {  
 }   

  

 ∫      
  

) 

(3.29)  

substituting  , { } and { } in (3.29) we have: 

 

  (
 

 
   ∫ { ̇ } [ ] [ ]{ ̇ }  

  

 
 

 
   ∫ { ̇ } [ ] [ ]{ ̇ }  

  

) 

 (
 

 
∫    [  ]{ 

 }  { }  
  

 
 

 
∫    [  ]{ 

 }  { }  
  

) 

 (
 

 
∫   [  ]  

 { }  
  

 ∫  [ ]{  }  {  
 }   

  

 ∫      
  

 ) 

(3.30)  

or, 

 

  (
 

 
   ∫ { ̇ } [ ] [ ]{ ̇ }  

  

 
 

 
   ∫ { ̇ } [ ] [ ]{ ̇ }  

  

) 

(3.31)  
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 (
 

 
∫   {  } [  ]

 [ ]  
  

 
 

 
∫   {  } [  ]

 [ ]  
  

) 

 ( 
 

 
∫  [  ]

 { }  
  

 ∫ {  } [ ] {  
 }    ∫      

    

 ) 

substituting values of { } and [ ] in equation (3.31) we have:  

 

  (
 

 
   ∫ { ̇ } [ ] [ ]{ ̇ }  

  

 
 

 
   ∫ { ̇ } [ ] [ ]{ ̇ }  

  

)

 (
 

 
∫   {  } [  ]

 [  ]{ }  
  

)

 (
 

 
∫  {  } [  ]

  [  ]{ }
  

 [ ] [ ]   )

 (
 

 
∫  [  ]

  [ ]{ }  [ ][ ]   
  

)

 (∫ {  } [ ] {  
 }   

  

 ∫      
  

 ) 

(3.32)  

substituting { } and [ ] from (3.22) and (3.23) in above equation, we have: 

 

  (
 

 
   ∫ { ̇ } [ ] [ ]{ ̇ }  

  

 
 

 
   ∫ { ̇ } [ ] [ ]{ ̇ }  

  

)

 (
 

 
∫   {  } [  ]

   [  ][  ]{ 
 }   

  

) 

 (
 

 
∫  {  } [  ]

   [  ][  ]{ 
 }

  

 [ ] [  ]    ) 

 (
 

 
∫  [  ]

   [ ][  ]{ 
 }  [ ][  ]    

  

) 

 (∫ {  } [ ] {  
 }   

  

 ∫      
  

) 

(3.33)  
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3.4. Deriving equations of motion using Hamilton’s principle 

According to Hamilton’s principle integration of Lagrangian between any two 

arbitrarily selected time intervals    and    must satisfy following equation:  

  ∫      
  

  

 (3.34)  

Substituting expression of Lagrangian from equation (3.33) we have:   

 
 ∫    

  

  

  

 ∫ (
 

 
   ∫ { ̇ } [ ] [ ]{ ̇ }   

 

 
   ∫ { ̇ } [ ] [ ]{ ̇ }  

    

)
  

  

 

 (
 

 
∫    {  } [  ]

 [  ][  ]{ 
 }  

  

) 

 (
 

 
∫   {  } [  ]

 [  ][  ]{ 
 }     {  } [  ]

 [  ] [  ]
  

  ) 

 (
 

 
∫   [  ]

 [  ][  ]{ 
 }    [  ]

 [ ][  ]  
  

) 

 (∫ {  } [ ] {  
 }   

  

 ∫      
  

)     

(3.35)  

In equation (3.35) we can take variation with respect to both variables {  } and   one by 

one, separately. Taking variation with respect to {  }  we have: 

 

∫  
 

 
  ∫ {  ̇ } [ ] [ ]{ ̇ }  

  

  

  

 
 

 
  ∫ { ̇ } [ ] [ ]{  ̇ }  

  

 
 

 
  ∫ {  ̇ } [ ] [ ]{ ̇ }  

  

 
 

 
  ∫ { ̇ } [ ] [ ]{  ̇ }  

  

 

(3.36)  
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∫    {   } [  ]

 [  ][  ]{ 
 }  

  

 

 
 

 
∫    {  } [  ]

 [  ][  ]{  
 }  

  

 

 
 

 
∫   {   } [  ]

 [  ][  ]{ 
 }

  

   

 ∫ {   } [ ] {  }    
  

    

since [  ] and [  ] are symmetric matrices. Therefore equation becomes 

 

 

∫   
 

 
  ∫ {  ̇ } [ ] [ ]{ ̇ }  

  

 
 

 
  ∫ {  ̇ } [ ] [ ]{ ̇ }  

  

  

  

 
 

 
  ∫ {  ̇ } [ ] [ ]{ ̇ }  

  

 

 
 

 
  ∫ {  ̇ } [ ] [ ]{ ̇ }  

  

 

 
 

 
∫    {   } [  ]

 [  ][  ]{ 
 }  

  

 

 
 

 
∫    {   } [  ]

 [  ][  ]{ 
 }  

  

 

 
 

 
∫   {   } [  ]

 [  ][  ]{ 
 }

  

   

 
 

 
∫   {   } [  ]

 [  ][  ]{ 
 }

  

   

 
 

 
∫   {   } [  ]

 [  ] [  ]   
  

 

 
 

 
∫   {   } [  ]

 [  ][  ]   
  

 

 ∫ {   } [ ] {  }     
  

   

(3.37)  
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or, 

 

∫  (  ∫ {  ̇ } [ ] [ ]{ ̇ }  
  

   ∫ {  ̇ } [ ] [ ]{ ̇ }  
  

  

  

 ∫    {   } [  ]
 [  ][  ]{ 

 }  
  

 ∫   {   } [  ]
 [  ][  ]{ 

 }
  

  

 ∫   {   } [  ]
 [  ] [  ]   

  

 ∫ {   } [ ] {  }    
  

)     

(3.38)  

 

performing integration by parts of first two terms of equation (3.38): 

 

  ∫  {   } [ ] [ ]{ ̇ } 
  

   
    

   ∫ ∫  {   } [ ] [ ]{ ̈ } 
  

    
  

  

   ∫  {   } [ ] [ ]{ ̇ } 
  

   
    

   ∫ ∫  {   } [ ] [ ]{ ̈ } 
  

    
  

  

                          

 ∫ [ ∫     {   } [  ]
 [  ][  ]{ 

 } 
  

  
  

  

 ∫ (  {   } [  ]
 [  ][  ]{ 

 })
  

  

 ∫    {   } [  ]
 [  ] [  ]    

  

 ∫  {   } [ ] {  }     
  

]    

(3.39)  
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or, 

 

   ∫ ∫  {   } [ ] [ ]{ ̈ } 
  

    
  

  

   ∫ ∫  {   } [ ] [ ]{ ̈ } 
  

    
  

  

 ∫ ∫     {   } [  ]
 [  ][  ]{ 

 } 
  

    
  

  

 ∫ ∫ (  {   } [  ]
 [  ][  ]{ 

 })
  

    
  

  

 ∫ ∫    {   } [  ]
 [  ] [  ]      

  

  

  

 ∫ ∫  {   } [ ] {  }     
  

  
  

  

   

(3.40)  

by taking out common term {   }  equation becomes: 

 

{   } ∫ [   ∫  [ ] [ ]{ ̈ } 
  

     ∫  [ ] [ ]{ ̈ } 
  

  
  

  

 ∫    [  ]
 [  ][  ]{ 

 } 
  

  

 ∫ (  [  ]
 [  ][  ]{ 

 })
  

  

 ∫    [  ]
 [  ] [  ]    

  

 ∫  [ ] {  }     
  

]    

(3.41)  

to satisfy above equation the terms inside the bracket must be equal to zero as: 

 

   ∫  [ ] [ ]{ ̈ } 
  

     ∫  [ ] [ ]{ ̈ } 
  

   

 ∫    [  ]
 [  ][  ]{ 

 } 
  

   

 ∫ (  [  ]
 [  ][  ]{ 

 })
  

   

(3.42)  



Chapter 3 

Mathematical model of a cantilevered plate structure 

 

 

60 

 

 ∫    [  ]
 [  ] [  ]    

  

 ∫  [ ] {  }     
  

   

after rearranging we get: 

 

[  ∫  [ ] [ ] 
  

     ∫  [ ] [ ] 
  

  ] { ̈ } 

 [∫    [  ]
 [  ][  ] 

  

   ∫ (  [  ]
 [  ][  ])

  

  ] {  } 

 [∫   [  ]
 [  ] [  ]    

  

]   ∫  [ ] {  }     
  

 

(3.43)  

Equation (3.43) can be written as follows and is called as matrix equation of motion of 

one element: 

 ([  ]  [  ]){ ̈
 }  ([  ]  [  ]){ 

 }  [   ]  {  
 } (3.44)  

where, 

 [  ]    ∫ [ ] [ ]  
  

 is elemental mass matrix for piezoelectric  

 [  ]    ∫ [ ] [ ]  
  

 is elemental mass matrix for plate structure 

 
[  ]  ∫   [  ]

 [  ][  ]   
  

 is elemental stiffness matrix for plate structure 

 
[  ]  ∫   [  ]

 [  ][  ]  
  

 is elemental stiffness matrix for piezoelectric 

 
[   ]  ∫  [  ]

 [ ] [  ]   
  

 is elemental electromechanical interaction matrix 

 
{  

 }  ∫ [ ] {  }    
  

 is elemental external force acting on the structure 

Similarly taking variation of equation (3.35) with respect to     equation becomes: 
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again taking out common term     , above equation becomes: 

after simplification we have: 

above equation will be satisfied if terms inside the bracket are equal to zero i.e: 

on further simplification we get: 

Equation (3.49) can be expressed in simple form as: 

The total voltage generated across piezoelectric patch is due to structural vibrations and 

externally applied charge. The voltage developed across piezoelectric patch can be 

expressed as: 

 

 ∫    
  

  

 ∫ [ 
 

 
∫      [  ]

 [  ] [  ]{ 
 }  

  

  

  

 
 

 
∫    [  ]

 [  ] [  ]{ 
 }  

  

 ∫    [  ]
 [  ][  ]   

  

 ∫        
  

]      

(3.45)  

 

  ∫ [ 
 

 
∫  [  ]

 [  ][  ]{ 
 }  

  

  

  

 
 

 
∫  [  ]

 [  ][  ]{ 
 }  

  

 ∫  [  ]
 [  ][  ]  

  

 ∫     
  

]      

(3.46)  

  ∫ [ ∫  [  ]
 [  ][  ]{ 

 }  
  

 ∫  [  ]
 [  ][  ]  

  

 ∫     
  

]     
  

  

 (3.47)  

  ∫  [  ]
 [  ][  ]{ 

 }  
  

 ∫  [  ]
 [  ][  ]  

  

 ∫     
  

   (3.48)  

  ∫   [  ]
 [  ][  ]   [  ]

 [  ][  ] { 
 }  

  

 ∫     
  

 (3.49)  

  [   ]{ 
 }  [   ]   ̅ (3.50)  

   
 ̅  [   ]{ 

 }

[   ]
 (3.51)  
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where, 

substituting equation (3.51) in equation (3.44) gives equation of motion as: 

([  ]  [  ]){ ̈
 }  ([  ]  [  ]){ 

 }  [   ][   ]
    ̅  [   ]{ 

 }  {  
 } (3.52)  

Following assembly procedure, mass matrices, stiffness matrices and force vectors of 

individual elements can be assembled to produce global matrix equation of motion of the 

two-dimensional smart cantilevered plate instrumented with piezoelectric sensor and 

actuator as:  

 [ ]{ ̈}  [ ]{ }  { } (3.53)  

where [ ] & [ ] are global mass & stiffness matrices respectively of the system and 

{ } is vector of excitation forces. In figure (3.5) the finite element mesh of smart plate is 

shown, having 64 elements and 81 nodes. Each node has three degrees of freedom.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, global matrices of final equation of motion have order of         as:  

  ̅  ∫    
  

 is external charge applied on piezoelectric surface 

 [   ]  ∫ [  ]
 [ ][  ]    

  

 is the capacitance of piezoelectric sensor  

 
Figure 3.5 Finite element mesh on the smart plate 
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 [ ]       { ̈}      [ ]       { }      { }      
(3.54)  

For cantilevered plate whose one side is fixed in mechanical clamp first 27 nodes are 

fixed to boundary. Therefore order of equation of motion of cantilevered plate is reduced 

as: 

 [ ]       { ̈}      [ ]       { }      { }      
(3.55)  

{ } is vector of excitation forces plus actuation forces applied by actuator to control the 

mechanical vibrations and can be shown as: 

 { }      [ ]     {     }      {     }      
(3.56)  

where [ ] is matrix of actuator location, {     } is vector of disturbance force and {     } 

is actuator force vector. The elasticity matrix for intelligent structure (cantilevered plate 

instrumented with piezoelectric patches) is expressed as: 

 [  ]  
 

      
[

   
   

  
   

 

] (3.57)  

where  ,   are the Young’s modulus & Poisson’s ratio of the material of the base 

structure respectively. 

3.5. Modal analysis 

To analyse a multi-degree of freedom system, it can converted to a single degree of 

freedom system using modal analysis. Orthonormal modal transformation is given by  

 { }    [ ]     {    }      (3.58)  

where [ ] &   are orthonormal modal matrix & modal vector respectively. A damping 

matrix is considered according to following relation in equation of motion: 

 [ ]               [ ] (3.59)  

where   is damping ratio such that               and    is natural frequency of the 

plate. Equation (3.54) can be written in modal domain as: 

 [ ][ ]{ ̈}  [ ][ ]{ ̇}  [ ][ ]{ }  [ ]{  }  {  } 
(3.60)  
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where [ ] is orthonormal modal matrix. Pre-multiplying (3.60) by [ ] , becomes: 

 
[ ] [ ][ ]{ ̈}  [ ] [ ][ ]{ ̇}  [ ] [ ][ ]{ }

 [ ] [ ]{  }  [ ] {  } 

(3.61)  

after simplification we have: 

 [ ]{ ̈}  [ ]{ ̇}  [  ]{ }  [ ] [ ]{  }  [ ] {  } 
(3.62)  

Equation of motion of      mode is: 

  ̈     ̇    
                              (3.63)  

where       &    represent modal displacement, modal control force, modal excitation 

force & natural frequency of      mode respectively. For first three modes we can write: 

 

 ̈     ̇    
       

 ̈     ̇    
       

 ̈     ̇    
       

(3.64)  

The total modal external force, acting on intelligent structure is:  

 { }  {     }  {     } (3.65)  

where, {     } is vector of excitation force/disturbance force and {     } is actuator force 

vector. Actuator force vector can be expressed as: 

 {     }  [ ] [   ][   ]
  

     

      
 (3.66)  

where       is permittivity of piezoelectric patch,     is area of piezoelectric patch and 

         is the thickness of piezoelectric patch.  

3.6. State-space model 

A mathematical model which is required for optimal controller must be in state space 

format as: 

 { ̇}  [ ]{ }  [ ]{ } (3.67)  

where { } & { } are system state & control vector respectively, [ ] & [ ] are system 

state matrix & control matrix respectively. The output relation is given as: 
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 { }  [ ]{ } (3.68)  

where [ ] is output matrix. In order to convert equation of motion to state-space let us 

take: 

 

  ̇     

  ̇     

  ̇     

 

Modal equations of first three modes can be re-written as: 

 

 ̇         
       

 ̇         
       

 ̇         
       

(3.69)  

These equations can be expressed in matrix form as: 

[
 
 
 
 
 
      
      
      
      
      
      ]

 
 
 
 
 

{
 
 

 
 
 ̇ 

 ̇ 

 ̇ 

 ̇ 

 ̇ 

 ̇ }
 
 

 
 

 

[
 
 
 
 
 

             
              
 

   
 

 
 

 
 

   
 

 

  
  
  

   
 

 
  
 
 

 
 
  
 

 
 
 
  ]

 
 
 
 
 

{
 
 

 
 
  

  
  

  
  

  }
 
 

 
 

 

{
 
 

 
 

 
 
 
  
  

  }
 
 

 
 

 (3.70)  

Let 

 

 

[   ]  

[
 
 
 
 
 
      
      
      
      
      
      ]

 
 
 
 
 

,              { }  

{
 
 

 
 
  

  
  

  
  

  }
 
 

 
 

 

[   ]  

[
 
 
 
 
 

             
              
 

   
 

 
 

 
 

   
 

 

  
  
  

   
 

 
  
 
 

 
 
  
 

 
 
 
  ]

 
 
 
 
 

,     

{
 
 

 
 

 
 
 
  
  

  }
 
 

 
 

 

(3.71)  

Equations (3.70) and (3.71) can be manipulated to write as: 

 { ̇}   [   ]
  [   ]{ }  [   ]

    (3.72)  

Let [ ]  – [   ]
  [   ] then we have: 
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 { ̇}  [ ]{ }  [   ]
    (3.73)  

substituting equation (3.66) we have: 

 { ̇}  [ ]{ }  [   ]
  [ ] [   ][   ]

  
     

      
 (3.74)  

Let 

 [ ]  [   ]
  [ ] [   ][   ]

  
     

      
 (3.75)  

therefore state-space model of cantilevered plate becomes: 

 
{ ̇}  [ ]{ }  [ ]{ } 

{ }  [ ]     

(3.76)  

where [ ] is output matrix and      is voltage generated by piezoelectric sensor as:  

      [   ][   ]
  { } (3.77)  

3.7. Conclusions 

In this chapter mathematical model of a cantilevered plate instrumented with 

piezoelectric sensor and actuator patch is derived in detail. The finite element technique 

based on Hamilton's principle is employed to do so. The cantilevered plate is discretized 

into 64 elements and 81 nodes. The finite element has four nodes in the corner and each 

node has three degrees of freedom. The equation of motion of a cantilevered plate is 

expressed by using a global mass matrix, stiffness matrix and external force vector. The 

equations of motions are truncated to first three modes using modal truncation. Thereafter 

the model is converted into a state-space model to be used by the optimal controller 

eventually in following chapters. 



67 

 

Chapter 4: Discrete time Kalman estimator 

4.1.Introduction 

     Man is interested in mechanical vibrations so as to design stable structures, monitor 

condition of dynamic structures, diagnose faults in machines, identify parameters of a 

structure and control vibrations (passively as well as actively). A typical vibration 

signal is summation of time responses of several modes of vibration. Fourier analysis 

of a vibration signal gives frequencies that are participating and individual extent of 

their participation. Time responses of individual modes of vibration can be computed 

theoretically using orthonormal modal transformation. Vibration modes can be 

experimentally measured using modal sensors. Many control laws require information 

of all variables of the state-space model. It is very difficult to measure all the state 

variables, particularly when measurement value contains uncertainty, random error or 

variation. Therefore, a program is required to estimate unknown states of the system 

based upon data available from a limited number of sensors. Researchers have given a 

lot of attention to state observers [116, 117, 118, 119]. State vector of linear system 

can be reconstructed from observation of single input-single output system [120] or 

multi input-multi output [121]. Kalman filter was proposed by Rudolf E. Kalman for 

estimation of states of linear discrete-time systems [122, 123]. Richard S. Bucy 

proposed Kalman-Bucy filter for continuous-time linear control systems [124]. There 

are many systems which cannot be presented in linear form, therefore Extended-

Kalman filter was proposed to deal with nonlinear systems [125]. As figure (4.1) 

shows, a state observer is a mathematical technique, which can estimate unknown 

states of a system by comparing input and output.  

     There are two types of state estimators: full order state observer which estimates all 

states of a system regardless of whether some states are available for direct 

measurement and reduced order state observer which estimates only remaining states 

of system which are not measured. Kalman filter is widely used for robotic, 

navigation, GPS, control system etc. 
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Following subsections discuss these two types of state observers. Thereafter, well 

known discrete Kalman observer which has been used in this work, is discussed. 

Kalman observer is illustrated in this chapter by applying it to estimate states of a test 

two degrees of freedom spring-mass-damper system.  

4.2. Full order state observer 

     Consider a continuous system described by state space model as: 

 
 ̇( )    ( )    ( ) 

 ( )    ( ) 
(4.1)  

where  ,   &   are    ,     &     real constant matrices respectively and  ( ), 

 ( ) &  ( )  are state, control & output vectors respectively. In this approach, as it is 

shown in figure (4.2), a model of real plant is constructed and considered as estimator to 

predict states of the original system as: 

  ̇̂( )    ̂( )    ( ) (4.2)  

where  ̂( ) is estimated vector of actual state vector  ( );  ,   &  ( ) are known and 

 ̂( ) =  ( ).  

 

 

 

Figure 4.1 Control system with state observer 
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System shown in figure (4.2) is an open loop system and therefore the error keeps on 

growing with time. To minimize error between estimated states and actual states, 

feedback control can be used.  In order to increase the speed of full order state observer 

and correct the model, Luenberger proposed to add feedback of difference between actual 

output   and estimated output  ̂ (figure (4.3)).  

 

 

 

 

 

 

 

Process equation of Luenberger state observer is expressed as:  

  ̇̂( )    ̂( )     ( )    ̂( )    ( ) (4.3)  

 

Figure 4.3 Luenberger state observer 

 

Figure 4.2  Full order state observer 
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where   is     real constant gain matrix which can be calculated by following 

procedure. The state error vector is: 

  ̃( )   ( )   ̂( ) (4.4)  

by differentiating both sides we have: 

  ̇̃( )   ̇( )   ̇̂( ) (4.5)  

substituting expressions from (4.1) and (4.3) in (4.5):  

 

 ̇̃( )    ( )    ( )    ̂( )    ( )     ( )    ̂( )  

 ̇̃( )  (    ) ̃( ) 
(4.6)  

The feedback gain   can be computed from Eigen values obtained from following 

equation: 

 |   (    )|    (4.7)  

4.3. Reduced order state observer 

     It is not reasonable to estimate all the states of a system when some of them are 

available. Also sometimes system contains a lot of noise which makes it difficult to 

estimate all the states of system using full order state observer. Therefore in such cases, 

an observer can be used to estimate only those states which cannot be measured. In order 

to use reduced order state observer system is divided into two parts (measurable part and 

estimated part) as:  

 

[
 ̇ 

 ̇ 
]  [

      

      
] [

  

  
]  [

  

  
]   

      [
  

  
] 

(4.8)  

where    is vector of direct measurable states and    is vector of estimated states. The 

equation of estimated states is: 
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  ̇                  (4.9)  

where       &     are known already and can be considered as input to estimated part. 

On the other hand, measurable part can be expressed as: 

  ̇                  (4.10)  

Using output equation (4.8), equation (4.10) becomes: 

  ̇                 (4.11)  

Comparing equations (4.9) & (4.10) with process equation (4.3) of Luenberger observer 

we find that     ,      ,            ,   ̇            &       represent   ̂ ,    ,     , 

    &     respectively. Equation of the reduced order observer can therefore be written as: 

  ̇̂      ̂            ( ̇               ̂ ) (4.12)  

the state error vector can be expressed as: 

  ̃      ̂  (4.13)  

Characteristic equation of the system is given by: 

 |   (        )|    (4.14)  

The observer gain     can be so selected that desired dynamic characteristics are 

obtained. 

4.4. Kalman observer 

     Kalman filter was proposed by R. E. Kalman, the Hungarian scientist in 1960 to find a 

solution to improve city train schedule. Kalman filter is a world known mathematical tool 

which is being used as trajectory estimator in dynamic systems. For tracking first three 

modes of cantilevered plate, all states of the system need to be available. Since the 

measurement of all the states of the system is difficult, an observer is used to estimate 



Chapter 4 

Discrete time Kalman estimator 

 
 

72 
 

states of the system. Therefore in following subsections, concept of white noise is 

explained and subsequently Kalman observer is illustrated. 

4.4.1. White noise 

     Kalman filter estimates the states of a system in presence of process noise and 

measurement noise. These noises are assumed to be white noise. The white noise has a 

distribution of Gaussian form with mean of zero and certain variance. 

   
∑  

 
   (4.15)  

where   is mean,   is number of samples and    is measurement noise variable. Variance 

is calculated as: 

 

   
∑(    )

 
 

  (  
 )    (  ) 

  

  (    
 ) 

(4.16)  

Where    is variance and    is expected value. The covariance matrix is calculated as: 

 

   ( ( )  (   ))  [

   
   

   
     

 
] 

  ( ( )  ( ) ) 

(4.17)  

4.4.2. Illustration of discrete Kalman filter 

Kalman filter is used to estimate unknown states of discrete-time control system 

expressed by linear difference equation as: 

  ( )    (   )    ( )   (   ) (4.18)  



   Chapter 4 

Discrete time Kalman estimator 

 
 

73 
 

with sensor measurement relation as: 

  ( )    ( )   ( ) (4.19)  

In a real process,   and   matrices may vary with time, but here they are assumed to be 

constant. Here  ( ) &  ( ) are process noise & measurement noise respectively which 

are assumed to be white noise, constant and independent of each other with normal 

probability distribution as: 

 

 ( )  (   ) 

   (   ) 
(4.20)  

That means, process noise has a normal Gaussian probability distribution of zero-mean 

(   ) and covariance of   . For measurement noise probability distribution is: 

 

 ( )  (   ) 

   (   ) 
(4.21)  

where   is measurement noise covariance matrix. The error between actual measurement 

and estimated states is:  

 

 ̅( )   ( )   ̅̂( ) 

 ( )   ( )   ̂( ) 
(4.22)  

where  ̅( ) (with super minus) is defined priori error,  ( ) is posteriori estimate error, 

 ̅̂( ) is priori state and  ̂( ) is posteriori state. Priori estimate error covariance and 

posteriori estimate error covariances are: 

 

 ̅( )     ̅  ̅   

 ( )          
(4.23)  

for finding the posteriori state estimate the following equation is considered: 
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  ̂( )   ̅̂( )   ( ( )    ̅̂( )) (4.24)  

where new states (posteriori states) are estimated and corrected by multiplying some gain 

to the residual value. The term  ( ( )    ̅̂( )) that is difference between actual value 

 ( ) & measurement prediction   ̅̂( ) is called ‘residual value’ and   is real constant 

feedback gain matrix that is selected to minimize the posteriori error covariance.  To 

satisfy equation (4.24), gain matrix   is given as:  

  ( )   ̅( )  (  ̅( )    )   (4.25)  

after rearranging we get: 

  ( )  
 ̅( )  

  ̅( )    
 (4.26)  

From equation (4.26) it is observed that if measurement error covariance   approaches 

zero, gain becomes: 

    
 ( )  

 ( )      
(4.27)  

In this condition, actual measurement ( ( )    ( )) is trusted more. Similarly in 

equation (4.26) if priori estimate error covariance  ̅ approaches zero we have: 

    
 ̅( )  

 ( )    
(4.28)  

So now, predicted measurement ( ̂( )    ̂( )) is trusted more than actual 

measurement. Kalman filter estimates states of the system by using feedback control. 

Two steps are there in a Kalman filter: time update (predictor) and measurement update 

(corrector). In time update, current state and error covariance estimates are used to obtain 

the priori estimate for the next time step.  In measurement update, a feedback is used with 

priori estimate to obtain an improved posteriori estimate. Working of Kalman filter is 

displayed in figure (4.4).  

 



   Chapter 4 

Discrete time Kalman estimator 

 
 

75 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let us consider two degrees of freedom system described in section 1.4 of chapter 1. 

Kalman filter as detailed in present chapter, has been used to estimate displacement of 

two masses shown in figure (1.2). Figures (4.5) & (4.6)  shows time response of actual 

displacements and estimated displacements of two masses. Good match is observed 

between displacements computed and estimated. Process noise covariance   and 

measurement noise covariance   are considered as: 

 

                           

 

 

 

 

Figure 4.4  Flowchart of Kalman filter  
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4.5. Conclusions 

     In this chapter concept of an observer has been introduced and Kalman filter is 

described in detail. To apply Kalman observer on a system, one has to execute two steps: 

first predict the states of system and then correct the predicted states using feedback 

control. Feedback gain can be defined to apply an appropriate correction on predicted 

states. The process of estimation and correction of states is continuously done in the 

Kalman observer to obtain time response of estimated states.   

 

Figure 4.5 Actual/estimated displacements of two degrees of freedom system for mass M1 

 

Figure 4.6 Actual/estimated displacements of two degrees of freedom system for mass M2 
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Chapter 5: Discrete time Linear Quadratic 

Tracking control 

5.1. Introduction 

A dynamic system varies from one state to another state with time depending on load, 

environmental conditions etc. There are numerous possible methods for controlling a 

dynamic system. Usually control laws are constructed that simultaneously minimize 

settling time and control effort. Optimal control law is derived by optimizing a 

performance index. Aim of an optimal control is to manipulate a sensor signal to satisfy a 

system such that a predecided performance index based on appropriate cost function is 

extremised. The concept of optimal control was proposed by L.S. Pontryagin, a soviet 

mathematician, in 1962 two decades after using modern control theories [126]. Optimal 

control has been extensively used in active vibration control. Optimal tracking control 

suggests optimal control gains which optimize a performance index depending on 

transient error and control effort [127]. Generally to derive an optimal control following 

steps are required: 

 derive a mathematical model in state-space form of the system 

 define a cost function or performance index to be extremised 

 define a control law considering optimal value of performance index and boundary 

conditions 

Linear Quadratic Regulator (LQR) controller and Linear Quadratic Gaussian (LQG) 

controller are two special types of the optimal controllers which have been used 

frequently in active vibration control. LQR and LQG are quadratic in control and 

regulation of error variable. The aim of the controller is to keep/regulate the state of the 

system close to zero. In Linear Quadratic Tracking (LQT) control, the output signal of the 

system is optimally maintained as close as possible to desired reference signals that keep 

on changing with time. In this chapter the mathematical background of LQT is discussed 

in detail. 
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5.2. Linear quadratic tracking control 

In previous chapter finite element model of the smart plate is converted into state 

space model of following form: 

   ̇                (5.1)  

in discrete form, state-space can be written as: 

                    (5.2)  

with output relation as: 

            (5.3)  

where     ,      &      are state, control & output vectors respectively.       &   are 

system matrix, control matrix & sensor vector respectively.   &   are discretised form of 

system matrix & control vector respectively. Aim of optimal control is to minimize cost 

function which includes integrals of the control effort and error between actual output & 

desired output. To track desired output with minimum expenditure of control effort error 

vector can be defined as: 

                (5.4)  

where      &      are error & desired input respectively. In this work, modes of 

vibration will be tracked by minimizing a performance index shown in equation (5.5), 

which is quadratic cost functional involving quadratic of error and control terms [128].  

 

  
 

 
[  (  )   (  )]

 
  [  (  )   (  )] 

 
 

 
∑ [          ]   [          ]            

    

    

 

(5.5)  

with boundary condition      =   . Here   is symmetric positive semi-definite matrix,   

is   dimensional desired reference vector,   is     symmetric positive semi-defiinite 
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matrix to keep error small,   is sensor dynamic voltage,   is positive definite matrix and 

   represents final location of the vector. Mathematical solution of LQT can be described 

using following steps: 

 derive Hamiltonian function  

 derive state and costate system 

 derive open-loop optimal control law 

 derive nonlinear matrix Difference Riccati Equation (DRE) 

 derive close loop optimal control 

To minimize the performance index we need to define Hamiltonian function as: 

 
 [                ]

  [           ]                        (5.6)  

where   is a function consisting of performance index to be minimized subject to 

constraining function   and   is co-state variable. In this work, Hamiltonian function is 

formulated as: 

 (                )

 
 

 
∑  [          ]   [          ]

    

    

                    [           ] 

(5.7)  

To derive LQT controller, we have to take differentiation of Hamiltonian with respect  , 

  and   to find optimal state, optimal co-state and optimal control voltage respectively. 

Partial differentiation of Hamiltonian function with respect to    gives optimal state as: 

         
  

        
 (5.8)  

where quantities with asterisk in superscript represent optimal quantities. Substituting 

Hamiltonian function in above equation gives: 
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(
 

 
∑  [          ]   [     

    

    

     ]                     [           ]) 
(5.9)  

after simplification equation becomes:  

 
  

        
 

 

        
       [           ] (5.10)  

Optimal state equation can be written as: 

                       (5.11)  

by taking partial differentiation of equation (5.7) with respect to     discrete optimal co-

state equation becomes: 

 

 

      
  

      
 (5.12)  

substituting   we have: 

 

 

  

      
 

 

      
(
 

 
∑  [          ]   [          ]

    

    

                    [           ]) 
(5.13)  

After simplification equation becomes:  

 

 
 

 

      
{
 

 
[          ]   [          ]              } (5.14)  

 or, 
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 [
 

 
(                                      

            )]  
 

      
[            ] 

(5.15)  

then 

 
  

 

 
[                                     ]

 [        ] 
(5.16)  

since       the equation becomes: 

        [                 ]  [         ] (5.17)  

Let us consider following definitions:  

                    (5.18)  

substituting these terms equation (5.17) becomes: 

                               (5.19)  

after rewriting the above equation, discrete optimal co-state equation becomes: 

                               (5.20)  

similarly taking partial differentiation of Hamiltonian equation (5.7) with respect to    , 

setting result equal to zero, we have: 

 

  

      
 

 

      
(
 

 
∑  [          ]   [          ]

    

    

                    [           ])    

(5.21)  

only parts of Hamiltonian function which contain   terms will remain, as:  
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[          ]  

 

      
               (5.22)  

or, 

 
 

 
[           ]  [        ]    (5.23)  

since      , above equation becomes: 

 
 

 
[          ]  [        ]    (5.24)  

after simplification, 

 [     ]  [        ]    (5.25)  

after rearranging as:  

 [     ]   [        ] (5.26)  

pre-multiplying equation by     gives: 

 [        ]   [           ] (5.27)  

therefore open loop discrete optimal control input equation becomes: 

         [            ] (5.28)  

substituting optimal control value (5.28) in equation (5.11) gives optimal state as: 

                               (5.29)  

Let us define, 

          (5.30)  

then equation (5.29) becomes: 
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                          (5.31)  

after combining equation (5.19) and equation (5.31) in matrix form we have: 

 [
       

     
]  [

   
   ] [

     

       
]  [

 
  

]     (5.32)  

where the initial condition is          . Fundamental theorem of the calculus of 

variations gives generalized boundary condition as: 

*   (
           

  
)+

  

    *(
           

      
)       +

 

  

  (  )    
(5.33)  

where   is entire terminal cost term in the performance index given by equation (5.7).  

For free final state system the variation represented by        at final discrete time 

instant    becomes zero in equation (5.33).  The final boundary condition on state 

equation in canonical system represented by equation (5.32) is given as: 

 *      (
           

      
)+

 

  

  (  )    
(5.34)  

the above equation will be satisfied when terms inside the bracket become equal to zero, 

therefore: 

   (  )  (
  (  (  )   )

   (  )
) (5.35)  

by substituting term     in above equation we have: 

   (  )  
 [

 
              ]

   (  )
 (5.36)  

substituting term     in above equation gives: 
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   (  )  
 

   (  )
 
 

 
[   (  )   (  )]

 
 [   (  )   (  )]  

(5.37)  

after simplification we get: 

 

  (  )  
 

   (  )
 
 

 
[   (  ) 

     (  )

    (  ) 
   (  )    (  )    (  ) (  )

   (  )  (  )]  

(5.38)  

or, 

 
  (  )  

 

 
[      (  )        (  )      (  )

      (  )]  
(5.39)  

since      , we get: 

    (  )        (  )      (  ) (5.40)  

Boundary condition on co-state in equation (5.40) and solution of the system of equation  

(5.32) indicate that state and co-state are linearly related as: 

                       (5.41)  

where      is     matrix and       is     vector. Using above equation, at instant 

       as: 

                               (5.42)  

substituting equation (5.42) in equation (5.31), gives: 

                  [                    ] (5.43)  

after simplification as: 
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                                        (5.44)  

rearranging above equation gives, 

                                        (5.45)  

or, 

        [         ]                  (5.46)  

rearranging again: 

         [         ]  [               ] (5.47)  

now substituting equations (5.41) and (5.42) in equation (5.20) gives: 

 

                         

         [                     ]        
(5.48)  

substituting equation (5.43) in equation (5.48) gives: 

 

                              [          ]   

[              ][       ]                   
(5.49)  

after simplification: 

                              [          ]   

        [         ]                           
(5.50)  

with further simplification as: 

 

               [          ]            

              [         ]                      
(5.51)  

due to factor of      , first part of above equation must be equal to zero as: 
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               [          ]        (5.52)  

or, 

              [          ]      (5.53)  

therefore, the nonlinear matrix difference Riccati equation becomes: 

        [          ]      (5.54)  

similarly for second part of equation (5.51) 

 
             [         ]                  

         (5.55)  

after rearranging the equation becomes: 

 
        [          ]                  

       (5.56)  

or 

            [          ]                 (5.57)  

therefore, the linear vector difference equation becomes: 

 
                 [           ]          

       (5.58)  

Final boundary condition for solving backward nonlinear difference matrix Riccati 

equation is obtained as: 

  (  )        (5.59)  

Final boundary condition for solving backward of linear vector difference equation (5.54) 

is obtained as: 
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  (  )            (5.60)  

Once control gains are obtained offline the close-loop optimal control is obtained using 

co-state equation (5.36) as: 

              [                    ] (5.61)  

rewriting as: 

 
                   [             ]

             (5.62)  

premultiplying both sides by   gives: 

 
                                              

              (5.63)  

rearranging, 

 
                     

                          (5.64)  

rearranging again, 

 
[           ]     

                          (5.65)  

Therefore optimal control that optimizes the performance index is given by: 

               
                 

(5.66)  

where feedback control gain      and feed forward control gain       are given by: 

 

      [          ]             

      [           ]      
(5.67)  
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 Block diagram shown in figure (5.1) demonstrates implementation of the discrete-time 

optimal tracker. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Substitution of optimal control law in equation of state gives optimal state    as: 

  ̂       [       ] ̂                 
(5.68)  

5.3. Conclusions 

In this chapter, Linear Quadratic Tracking controller has been derived step by step. 

To make LQT controller track desired references a performance index minimizes the 

 

Figure 5.1  Block diagram of optimal tracking control  
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error between desired output & actual output and the control effort. Generally, to develop 

LQT controller to track desired references following four steps have to be executed:  

Step. 1. Formulate the appropriate Hamiltonian function based on the performance 

index. 

Step. 2. Derive expressions for optimal state and co-state of system by taking 

differentiation of Hamiltonian with respect to co-state and state vector 

respectively. 

Step. 3. Solve for the optimal state. 

Step. 4. Derive optimal control voltages by taking differentiation of Hamiltonian 

function with respect to the control variable. 
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Chapter 6: Generating desired vibrations in a 

cantilevered plate: simulations 

6.1. Introduction 

     A test structure can be dynamically tested very effectively if desired transient 

vibrations can be generated in the structure. Present work proposes to achieve this by 

using concept of ‘active vibration control’ with non-zero and time varying reference 

signals.  In this chapter this proposed technique has been numerically applied on a 

cantilevered plate. Finite element model of structure discussed in chapter 3 and optimal 

tracking controller discussed in chapter 5 are used to perform numerical simulations. 

6.2. LQT control based generation of desired vibrations 

     Consider a thin mild-steel cantilevered plate of size                      . 

This plate is divided into      equal quadrilateral elements of size             as 

shown in figure (6.1). As can be observed, one PZT-5H piezoelectric patch is pasted at 

     element to act as sensor and one PZT-5H piezoelectric patch is pasted at       

element to act as an actuator.  

  

 

 

 

 

 

 

  

Figure 6. 1  Cantilevered plate 
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Piezoelectric patches have been located in regions where modal strains are large. Modal 

strains are high near the cantilevered edge of a cantilevered plate. Therefore piezoelectric 

patches have been located near the cantilevered edge of the plate. The properties of the 

SP-5H piezoelectric patch and mild-steel plate under test are tabulated in table (6.1).   

Table 6.1 Properties of piezoelectric patches and plate under test 

                                  length     width     thickness    density      Young’s    Poisson’s                 relative  

                       (mm)     (mm)       (mm)        (Kg/m
3
)      modulus     ratio          (m/volt)    dielectric  

                                                                                     (N/m
2
)                                     constant 

piezoelectric patch    20     20            1            7500          4.8   10           0.3    -285   -12      3250                 

plate (mild-steel)     160    160         0.51        7800           2.07   11         0.3           -                   -                           

The mathematical model of such a square plate with      nodes and three degrees of 

freedom per node is coded in MATLAB software using finite element technique. Degrees 

of freedom corresponding to first     nodes vanish due to fixed cantilevered boundary 

condition. The mathematical model is truncated to first three modes using orthonormal 

modal truncation. Thereafter the model is converted into a state-space form. Discrete 

form of corresponding state-space matrices of smart plate are as under (see equation 

(3.67)): 
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In presented scheme, control voltage at a particular instant of time is dependent on all the 

modes. It is not that at a particular instant of time effort is explicitly made to track a 

particular mode (like in Independent Modal Space Control (IMSC) or Modified 



Chapter 6 

Generating desired vibrations in a cantilevered plate: simulations 

 
 

93 
 

Independent Modal Space Control (MIMSC)). All modes are simultaneously tracked at a 

particular instant of time. The flowchart of proposed technique is shown in figure (6.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time response of vibrations of the plate contains several modes of vibration. Fourier 

transformation of transient response of the structure using FFT command of MATLAB 

gives frequency response of the signal as shown in figure (6.3). As can be seen in figure 

(6.3), first three natural frequencies are       ,       and        hertz respectively. To 

generate transient response of individual modes, equation of motion (3.55) has been 

transformed into modal equation of motion by performing orthonormal modal 

transformation. Upon simplification, decoupled equations of motion of individual modes 

 

Figure 6. 2  Flowchart for theoretical simulations 
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are obtained in equation (3.63). Equation (3.63) is solved in time domain to generate 

transient response of individual modes.   

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 3  First three natural frequencies of plate 

 

 

Figure 6. 5  Mode shape of second mode  

 

 

Figure 6. 4  Mode shape of first mode 
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Mode shapes of first three modes of cantilevered plate are shown in figures (6.4), (6.5) & 

(6.6). Figures (6.7), (6.8) & (6.9) show time response of first three modal displacments 

when edge opposite to cantilevered edge of the plate is disturbed by     . Time domain 

signals given in figures (6.7), (6.8) & (6.9) are taken as reference signals for first, second 

& third modal displacements respectively. 

 

 

 

 

 

 

 

 

 

Figure 6. 7  Reference signal for first mode  

 

Figure 6. 6  Mode shape of third mode 
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Figures (6.10), (6.11) & (6.12) show time response of first three modal displacements of 

the plate when plate is controlled using optimal tracking control with references as 

displayed in figure (6.7), (6.8) & (6.9). It can be observed that with presented optimal 

tracking control, first three vibration modes of the plate can be made to simultaneously 

track reference signals effectively. Performance index used in the optimal tracking 

control is as expressed in equation (5.5). Weighting matrices   and   matrices are taken 

as: 

 

Figure 6. 8  Reference signals for second mode  

 

Figure 6. 9  Reference signals for third mode 
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Figure 6. 11  Time response of  second modal displacement  

 

Figure 6. 10  Time response of first modal displacement 
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Figure (6.13) shows time response of impulse control voltage of duration 0.03 seconds 

and height 200 volts applied on piezoelectric actuator to excite/disturb the system. 

 

 

 

 

 

 

 

Reference signals shown in figures (6.14) to (6.16) are modal displacements obtained by 

applying impulse control voltage shown in figure (6.13) of duration 0.03 seconds and 

height 200 volts on actuator patch. It can be observed in figures (6.14) to (6.16) that 

reference signals corresponding to impulse excitation are also being effectively tracked 

by the optimal controller.  

 

 

Figure 6. 13  Time response of impulse voltage used to excite the structure 

 

Figure 6. 12  Time response of third modal displacement 
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Figure 6. 14 Time response of first modal displacement 

 

Figure 6. 16 Time response of third modal displacement 

 

Figure 6. 15 Time response of second modal displacement  
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6.3. LQT control based suppression of vibrations 

     In all AVC works, control has been used as a regulator to suppress structural 

vibrations to mean position i.e. zero position. If desired transient decay curves are not 

given as reference then performance of an active structure may appreciably change if due 

to some reason there is gain/loss of mass or/and stiffness or/and damping of an active 

structure. This is a clear gap in the field of AVC which authors feel should be plugged to 

make performance of smart structures robust. There is a dire need to have an AVC 

strategy that enables the designer of active structures to design tailor-made transient 

response of a smart structure. This work will be of interest when it is desired to maintain 

a particular level of vibrations during journey of vibration decay so as to meet some 

functional requirement. There is no work in which optimal control has been used to 

simultaneously achieve desired transient decay curves of individual modes of vibration.      

In this section, optimal tracking control has been used to suppress structural vibrations of 

a cantilevered plate with desired transient decay curves of individual modes. AVC 

technique presented in this section allows to exercise more control on response of an 

active structure and allows to precisely dictate the vibratory response of a structure. The 

LQT technique is applied on a plate structure when it is disturbed and results are 

discussed in this section. First of all, zero references are given to all the states of the 

state-space model while applying LQT control law. In this simulation, test plate is 

disturbed by vertically displacing edge of plate opposite to the cantilevered edge of plate 

by      and then LQT controller is applied on smart plate system. All the three modes 

of vibration are given mean position i.e. zero references for tracking. Figures (6.17), 

(6.18) & (6.19) present time response of uncontrolled as well as controlled signals of first 

three modes. It can be observed that all the modes are getting suppressed and 

approaching towards the mean position. 
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Figure 6. 17 Time response of uncontrolled, reference and LQT controlled vibration signal 

 

 

Figure 6. 18 Time response of uncontrolled, reference and LQT controlled vibration signal 

 

 

Figure 6. 19 Time response of uncontrolled, reference and LQT controlled vibration signal 
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     Next, reference signals for first three modes of vibration are obtained by multiplying 

time responses of uncontrolled modal displacements shown in figures (6.20), (6.21) & 

(6.22) by a factor of    . Figures (6.20) to (6.22) presents performance of LQT controller 

when these new time-varying references are taken. It can be clearly observed in figures 

(6.20) to (6.22) that all the three modes of vibration have successfully and impressively 

tracked their respective time-varying reference signals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 20 Time response of uncontrolled, reference and LQT controlled vibration signal 

 

 

Figure 6. 21 Time response of uncontrolled, reference and LQT controlled vibration signal 
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Corresponding control voltages applied on the actuator is shown in figure (6.23). It can 

be confidently concluded that usage of LQT control in AVC application, allows to 

precisely dictate transient decay curves of individual modes simultaneously. 

 

 

 

 

 

 

 

 

6.4. Conclusions 

          In this chapter two simulation tests are performed: 

 

Figure 6. 23 Time response of control voltages applied on actuator 

 

 

 

 

 

Figure 6. 22 Time response of uncontrolled, reference and LQT controlled vibration signal 
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i) A cantilevered plate instrumented with piezoelectric sensor and actuator is taken as a 

test product. Reference decay curves are selected for first, second and third modal 

displacements. It is found that optimal tracking control is capable to simultaneously 

track these three reference signals simultaneously. Presented optimal controller is also 

able to efficiently track reference modal displacements obtained by exciting the plate 

by typical impulse signal. It is therefore concluded that optimal control strategy 

discussed in this work can be exploited to vibrate a test-product in the laboratory in 

the manner it would have vibrated in the real world. 

ii) Optimal tracking control is employed to track zero references. Using this technique 

one can successfully suppress multiple modes of vibration simultaneously in a 

structure using a simple procedure. Active vibration control is also successfully 

performed when non-zero transient decay curves are taken as references while 

applying LQT control. Present work presents a simple strategy to dictate transient 

response of individual modes of vibration while suppressing structural vibrations of 

an active structure. 
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Chapter 7: Generating desired vibrations in a 

cantilevered plate: experiments 

7.1. Introduction  

     The area of vibration control is evolving rapidly primarily due to the high demand of 

low weight automotive structures. To achieve desired vibration characteristics of the 

product in field, extensive vibration testing is required of the product in the laboratory. In 

previous chapter theoretical results show that the technique based on LQT control 

proposed for generating desired vibrations, can be applied on a test structure successfully. 

In this chapter, the proposed technique is verified through  experiments. Labview 

software is used to interface the smart structure with a desktop computer. Kalman filter is 

used to estimate the states of the intelligent system. In following  sections, experimental 

set-up, experimental results and conclusions are discussed. 

7.2. Experimental set-up 

     Experimental set-up for this work is shown in figures (7.1) and (7.3). Experimental 

setup consists of: 

1. Cantilevered plate instrumneted with piezoelectric patches  

2. Signal conditioner 

3. Band pass filter 

4. PXI amplifier 

5. CRO 

6. SCB-68 connector box 

7. Function generator 

8. Labview software 

9. Host computer 

A cantilevered plate of mild-steel with average thickness of         and dimension of 

              is selected as a test structure. The plate is divided into    equal 
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elements. The optimal place for sensor and actuator over plate is found using hit & trial 

method and is found to be  near the cantilevered edge. A PZT-5H piezoelectric patch is 

selected as sensor/actuator and pasted carefully on element number     as sensor and 

element number    as actuator, using a thin layer of epoxy adhesive as shown in figure 

(7.1). Copper wires are soldered to both sides of piezoelectric patches in which negative 

side is pasted on the base plate. State space model of the test structure, Kalman filter & 

optimal tracking control algorithm are programmed in Labview software and loaded on to 

the PXI-system. Gains of the optimal controller and Kalman filter coefficients are 

calculated off-line for usage in Labview program.  

     As reported in chapter on simulation, we wish to track first three vibration modes  

experimentally. As shown in figures (7.1) and (7.3), sensor signal is amplified by signal 

conditioner. In order to have first three modes of the plate, the sensor signal is passed 

through a band-pass filter, which is set in the range of          to remove 

disturbances. The vibration signal enters PXI-controller through SCB-68 connector box. 

The output signal from the controller passes through SCB-68 connector and after 

amplification is applied on the actuator. 

 

 

 

 

 

 

 

 

 

 

Figure 7.1  Block diagram of the experimental set up 
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7.3. Experimentation and experimental results 

In current experiments, for generating desired vibrations, following steps are carried out: 

 Excite test structure and store first three modes of vibration of the structure as 

estimated by the Kalman observer. 

 Take first three modes of vibration of the structure as references and compute 

optimal control voltages using optimal tracking control. 

 Apply optimal control voltages, as calculated above, on  the actuator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2 Flowchart of experimental work 
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All three modes of vibration get sufficiently excited simultaneously if the structure is hit 

by an impact hammer near the cantilevered edge around element number 12. The 

experimental and theoretical frequencies of the plate are tabulated in table (7.1). 

Table 7.1 First three natural frequencies of plate 

                   experimental values          theoretical values 

   (Hertz)                (Hertz)    

first mode   18.67      18.59 

second mode                           43.33      44.57 

third mode                               93                                 105.45 

Vibration modes may not get tracked due to differences between theoretical and 

experimental frequencies, as shown in table (7.1). These differences may be due to error 

in material properties, variations in the thickness of the plate, poor modelling of boundary 

conditions etc. To resolve this problem, during experimentation, system matrix     being 

used in the Kalman observer is updated using experimental natural frequencies. In figure 

(7.2) steps of proposed technique are shown through a flowchart. 

 

 

 

 

 

 

 

 

 

 
 

Figure 7.3  Experimental set up 
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     First of all controller is asked to simultaneously track only first two modes of 

vibration of the cantilevered plate. Figures (7.4) & (7.5) show time responses of reference 

as well as experimental modal displacements of first two modes when controller is 

tracking only first two modes simultaneously. Experimental time responses of first two 

modes is very effectively tracking corresponding references.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

   Next, controller is asked to simultaneously track first three modes of vibration of the 

cantilevered plate. Figures (7.6), (7.7) & (7.8) show time responses of theoretical as well 

 

Figure 7.5 Experimental time response of second modal displacement 

 

 

Figure 7.4 Experimental time response of first modal displacement 
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as experimental modal displacements. Experimental time responses of first three modes 

effectively track references. There is some mismatch between references and controlled 

time responses. This can be attributed to spillover effects that occur due to usage of 

truncated mathematical model. From figures (7.4) to (7.9) it can be seen that tracking is 

better when controller is tracking first two modes simultaneously compared to case when 

controller is tracking first three modes simultaneously. This is attributed to the fact that 

control effort is shared among only two modes in former case as against three modes 

latter case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7  Experimental time response of  second modal displacement  

 

 

Figure 7.6  Experimental time response of (a) first modal displacement 
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Experimental control voltages applied on the piezoelectric actuator patch are shown in 

figure 7.9, when controller is asked to control first three modes of vibration 

simultaneously . 

 

 

 

 

 

 

 

7.4. Conclusions 

     It is important to verify the performance of an intelligent structure through vibration 

tests in a laboratory before using it practically. It is desired to vibrate the test structure 

during testing phase exactly as it would actually vibrate during deployment in the field. 

 

Figure 7.9  Experimental time response of control voltage 

 

Figure 7.8  Experimental time response of third modal displacement 
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Present work has successfully demonstrated a technique to vibrate a test-structure in a 

laboratory in the manner it may vibrate in field. For this purpose, optimal tracking control 

has been successfully applied on state-space model of the test plate structure using 

Labview software and PXI system. This technique can be further exploited to generate 

desired vibrations even in complex shaped structures 

 

 

 

 

. 
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Chapter 8: Conclusions and future scope 

 

8.1. Conclusions 

     It is desirable to verify the performance of a structure through vibration tests in a 

laboratory before using it practically in field. This work presents a novel technique for 

vibration testing of a typical mechanical structure. In order to obtain this objective, in 

present work, a cantilevered plate instrumented with piezoelectric sensor and actuator is 

taken as a test product. Reference decay curves are selected for first, second and third 

modal displacements. Simulation and experimental results prove that using an optimal 

tracking control, desired vibration signals can be excited in a structure. To do this, 

mathematical model of the system is derived using finite element theory and then it is 

converted into a state-space model. An optimal tracking control is then employed to track 

desired references. Presented strategy can be used to do dynamic vibration testing of a 

product by forcing the product to experience same transient vibrations that it is expected 

to experience in field 

Main contributions of this work are: 

i. A novel technique is proposed for vibration testing of a structure in a laboratory. 

A cantilevered plate is made to experience transient vibrations which it may be 

expected to encounter in a real environment. This technique can also be used to 

dictate desired transient decay curves. 

ii. First three modal displacements of the rectangular plate have been tracked 

simultaneously using optimal tracking controller both theoretically as well as 

experimentally.  

iii. Presented strategy can be commercially used for dynamic vibration testing of a 

product. 

 

8.2. Future scope 

Probable directions for future work can be: 
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i. Illustration of vibration testing technique on actual products. 

ii. Commercialization of vibration testing technique demonstrated in this thesis. 
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