Exam.Code: 0906 Sub. Code: 6668

1119

B.E. (Mechanical Engineering) Second Semester

APH-203: Quantum and Statistical Physics (Common with IT, ECE and EEE)

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Unit.

x-x-x

- I. Answer the following briefly:
 - a) Why does the moon create two high tides on opposite sides of the earth? Should'nt there only be one, on the side closest to the moon?
 - b) Explain the meaning of Eigenstate and Stationary state.
 - c) Distinguish between gravitational red shift and Doppler red shift.
 - d) Under what conditions do the Bose-Einstein and Fermi-Dirac distribution approach Maxwell Boltzmann distribution.
 - e) Explain the physical significance of quantum numbers n, 1 and m_1 . (5x2)

UNIT-I

- II. a) Using uncertainty principle, estimate the size of the hydrogen atom in the ground state.
 - b) Distinguish between group velocity and wave velocity. Prove that the de-Broglie wave packet associated with a moving body travels with the same velocity as the body.

 (4,6)
- a) Discuss Doppler effect for light. Derive an expression of change in wavelength of light as seen by the moving observer moving away from the source of light.
 - b) Mention the important postulates of the quantum mechanics. (6,4)
- IV. a) Derive the Schrodinger's time independent wave equation and prove that energy quantization is included in the equation.
 - b) Two rockets of rest length Lo are approaching the earth from opposite directions at velocities \pm c/2. How long does one of them appear to the other? (5,5)

UNIT-II

- V. a) Explain the origin of spin-orbit coupling in atoms.
 - b) Discuss the tunnel effect for a particle approaching a potential barrier of finite width, with energy less than that of the barrier height. (3,7)
- VI. a) In a hydrogen atom an electron is in a 3d state.
 - i) From the quantum mechanical model find the magnitude of the orbital angular momentum L of the electron in units of h.
 - ii) Find the energy of the electron in eV.
 - iii) What are the allowed transitions for this electron that result in the emission of a photon?
 - iv) Calculate the energy of the transition(s) in (iii) in eV.
 - b) What is Bose-Einstein statistics? Derive formula of Bose-Einstein distribution law. (4.6)
- VII. Discuss how Rayleigh Jeans law failed to account for the spectral distribution of energy density in the black-body radiation. How did Planck's radiation law overcome the difficulty? (10)