

Exam.Code: 0928 Sub. Code: 33658

2055

B.E. (Electronics and Communication Engineering)

Fourth Semester

EC-409: Network Analysis

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Unit. Missing data (If any) can be appropriately assumed.

x-x-x

Q1 Explain briefly

A) State the Maximum power theorem for AC and DC circuit.

(2)

B) Obtain the lattice equivalent of a symmetric Π -network shown in Fig. 1

(2)

Fig.1

C) Explain in following terms (i) Reflection factor (ii) Reflection loss

(2)

D) What are reciprocal and symmetrical networks?

(2)

E) Draw T-section and -section of a band-stop filter.

(2)

(5)

UNIT - I

Q2 A) Determine the current i₁ in the circuit of Fig. 2 using nodal analysis method and graph (5) theory concepts.

- B) Derive the expression used for the delta equivalent resistance from star connection.
- Q3 A) Two identical sections of the circuit shown in fig. 3 are connected in series. Obtain the z-parameters of the combination and verify by direct calculation.

(5)

B) Find the h-parameters for the two-port network shown in Fig. 4.

Q4 A) Draw poles and zeros for the transform voltage and evaluate V(t) either analytically or (5) by making use of pole-zero diagram.

$$V(s) = \frac{s^2 + 3s + 2}{s^2 + 7s + 12}$$

B) What do you understand by the transfer function of a system? State its properties. (5)

UNIT - II

- Q5 A) What are filters? Write and explain the properties of the filters. (5)
 - B) Write short notes on (5)
 - (i)Butterworth filter
 - (ii) all pass filter.
- Q6 A) Design a band-elimination filter having a design impedance of 600 Ω and cut-off (5) frequencies $f_1 = 2$ kHz and $f_2 = 6$ kHz.
 - B) Define notch frequency. Explain the operational characteristics of an active notch filter. (5) Where are these filters used?
- Q7 A) At 8MHz the characteristic impedance of a transmission line as $40 j2 \Omega$ and the (5) Propagation constant 0.01 + j 0.18 per meter. Find the primary constant.
 - B) Explain in detail (i) Characteristic impedance and (ii) propagation constant (5)