2055

B.E. (Electronics and Communication Engineering)

Fourth Semester

EC-408: Electromagnetic Theory

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Unit. Use of scientific calculator is allowed.

x-x-x

- I. Attempt the following:
 - a) Mention the properties of electric flux lines.
 - b) What is the total force acting on a moving charge, Q in the presence of both electric and magnetic fields?
 - c) Name few applications of Gauss law in electrostatics.
 - d) Define Reluctance and Permeability.
 - e) Distinguish between conduction and displacement currents.

(5x2)

UNIT - I

- II. a) With neat diagrams, explain the spherical system with co-ordinates (R, θ, ϕ) .
 - b) Two point charges 4 μ C and 5 pC are located at (2, -1, 3) and (0, 4,-2) respectively. Find the potential at (1, 0, 1) assuming zero potential at infinity. (2x5)
- III. a) Derive Laplace's and Poisson's equations from Gauss's law for a linear material medium. State the importance of these equations.
 - b) State and prove stokes theorem.

(2x5)

- IV. a) Derive the expression for a potential at a point due to a point charge.
 - b) Derive the equation of continuity.

(2x5)

UNIT - II

- V. a) State and explain uniqueness theorem.
 - b) What is a waveguide? What is its importance and applications?

(2x5)

P.T.O.

- VI. a) Using Maxwell's equations derive an expression for uniform plane wave in free space.
 - b) Derive the expression for attenuation "factor for TEM waves between parallel conducting planes. (2x5)
- VII. Derive suitable relations for integral and point forms of poynting theorem. (10)

x-x-x