2055

B.E. (Electronics and Communication Engineering) Fourth Semester

EC-406: Analog Electronic Circuits

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Unit.

x-x-x

I. Attempt the following:-

- Differentiate between a two stage and a three stage common a) emitter amplifier. Explain the concept of DC load line and AC load line in a single stage amplifier.
- Differentiate between common mode gain and differential mode b) gain of an operational amplifier. What is CMRR?
- c) Discuss the merits and demerits of a hartley oscillator.
- Explain the concept of virtual ground. How it is different to the d) actual or real ground?
- What is a current mirror? Give two applications. e) (5x2)

UNIT - I

- a) Explain why the transistor gain varies with high frequency and II. low frequency in an amplifier?
 - b) Explain the transformer coupling in cascading two amplifiers?
 - c) Explain why the darlington pair does not produce any gain? What are its applications? (4,3,3)
- a) Explain why negative feedback is given in an amplifier? Derive III. the expression for a negative feedback amplifier. What is the effect of negative feedback on the gain and impedance of an amplifier?
 - b) Explain miller theorem with an example and compare it with thevenin theorem. (5,5)

P.T.O.

IV. Write notes on:-

- a) Differential amplifier and single stage amplifier difference.
- b) Give four characteristics of an ideal operational amplifier.
- c) Current mirror load differential amplifier. (5,1,4)

UNIT - II

- V. a) Explain the working of a logarithmic operation using an operational amplifier.
 - b) Design a circuit which can evaluate the expression $(v_1/v_2)^2$, where v_1 , v_2 are two input analog inputs. (5,5)
- VI. a) Explain the working of a differentiation operation using an operational amplifier.
 - b) Design a circuit which can evaluate the expression with respect to time, $\int (v1-v2)/(v1+v2)$ where v_1 , v_2 are two input analog inputs.

(4,3,3)

VII. Write notes on:-

- a) Clippers and their two applications
- b) Crystal oscillator
- c) Low pass op amp filter (3,3,4)

x-x-x