Exam.Code:1006 Sub. Code: 35103

2055

M.E. (Information Technology) Second Semester

MEIT-2202: Advanced Soft Computing

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Unit.

x-x-x

I. Attempt the following:-

- a) Differentiate between hard computing and soft computing.
- b) Using linear separability concept, obtain the response for NOR function. (take bipolar inputs and targets)
- c) State the concept of delta rule used in adaptive linear neuron.
- d) Law of excluded middle law cannot be applied to fuzzy sets. Give proper justification to the statement.
- e) "Termination criteria for genetic algorithm brings the search to halt". Explain various termination techniques. (5x2)

UNIT - I

- II. a) Differentiate between classification and clustering with suitable examples.
 - b) Certain medications and trauma can both cause blood clots. A blood clot can lead to a stroke, heart attack, or it could simply dissolve on its own and have no health implications. The following probability information is given where M= Medication, T=trauma, BC=Blood clot, HA=heart attack, N= nothing, and S=stroke. T stands for true or this event did occur. F stands for false, or this event did not occur.

P(M=T)	0.2		
P(M=F)	0.8		
P(T=T)	0.05		
P(T=F)	0.95		

M	T	P(BC=T)	P(BC=F)	
T	T	0.95	- Contract of the Contract of	
T	F	0.3	0.7	
F	IT.	0.6	0.4	
F	F	0.9	0.1	

BC	P(HA=T)	P(HA=F)	P(S=T)	P(S=F)	P(N=T)	P(N=F)
T	0.4	0.6	0.35	0.65	0.25	0.75
F	0.15	0.85	0.1	0.9	0.75	0.25

- i) Create a DAG that represents this situation
- ii) What is the probability that a person develop a blood clot as a result of both medication and trauma and then have no medical implication? (2x5)
- III. Use Adaline network to train ANDNOT function with bipolar inputs and targets. Calculate total mean square error after 1 epoch of training. Initially, the weights and bias have assumed random value of 0.2. The learning rate also set to 0.2. (10)
- IV. Explain how adaptive resonance theory achieves the properties of stability and plasticity.

 Also, describe the difference between ART1 and ART2. (10)

Sub. Code: 35103

(2)

<u>UNIT - II</u>

- a) With the help of figure explain, the features of fuzzy membership functions. V.
 - b) Explain the characteristics and different classifications of a neuro-fuzzy hybrid systems.
- Determine the α -cut sets for the given fuzzy sets: VI.

(10)

Determine the
$$\alpha$$
-cut sets for the given α

$$\frac{S1}{S1} = \left\{ \frac{0}{0} + \frac{0.5}{20} + \frac{0.65}{40} + \frac{0.85}{60} + \frac{1.0}{80} + \frac{1.0}{100} \right\}$$

$$\frac{S2}{S2} = \left\{ \frac{0}{0} + \frac{0.45}{20} + \frac{0.6}{40} + \frac{0.8}{60} + \frac{0.95}{80} + \frac{1.0}{100} \right\}$$
Express the following for $\alpha = 0.5$

- (ii) $\underline{S1} \cap \underline{S2}$ (iii) $\overline{\underline{S1}}$ (iv) $\overline{\underline{S2}}$ (v) $\underline{S1} \underline{S2}$ (i) S1 U S2
- Explain the working principle of particle swarm optimization. How it is used to solve the VII. problem of exploration and exploitation?