Exam.Code: 1018 Sub. Code: 35258

2055

M.E. Electrical Engineering (Power Systems) Second Semester EE-8203: Digital Control System

Time allowed: 3 Hours Max. Marks: 50

NOTE: Attempt any five questions.

x-x-x

- a) List the fundamental elements of a digital control system and illustrate its block diagram representation.
 - b) Define digital control systems and differentiate them from analog control systems.

(2x5)

- II. a) Explain the principle of discretization. How does an ideal sampler differ from an actual sampler?
 - b) Compare different hold circuits based on their impulse and frequency response characteristics. (2x5)
- III. a) Why is the z-transform important in digital control system analysis? Define the pulse transfer function and state the limitations of the z-transform.
 - b) Discuss the practical considerations in selecting an appropriate sampling rate.

(8,2)

- IV. a) Define the z-transform and explain its relationship with the Laplace transform.
 - b) What is system stability in digital control systems? List various methods used to analyze system stability. (2x5)
- V. Illustrate the block diagram of a digital position control system and explain its working. (10)

P.T.O.

- VI. a) What are digital compensators? Describe the methods used for their implementation.
 - b) Explain the working of a stepping motor, including control actions and its application in a disk drive system. (2x5)
- VII. a) What are the advantages of using the state variable method in digital control system analysis? Show that the state variable model of a digital control system is given by:

$$x(k+1) = \phi(1) x(k) + \Theta(1) x(k)$$

 $c(k) = D x(k) + E u(k)$

b) Define controllability and observability. (7,3)

VIII. Write short notes on:-

- a) Multivariable digital control systems
- b) Solution of state equations (10)