Exam. Code: 1018 Sub. Code: 35257

2055

M.E. Electrical Engineering (Power Systems) Second Semester

EE-8202 (PS): EHV AC Transmission

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>any five</u> questions. Missing data (if any) can be appropriately assumed.

x-x-x

Q1 A) Explain the effect of resistance of conductor in EHV AC transmission system.

(5)

B) A power of 1200 MW is required to be transmitted over a distance of 1000 km. At voltage levels of 400 kV, 750 kV, 1000 kV and 1200 kV, determine:

(5)

- i) Possible number of circuits required with equal magnitudes for sending and receiving end voltages with 30° phase difference.
- ii) The current transmitted and
- iii) Total line losses.
- Q2 A) Define Geometric mean radius (GMR) of a bundle conductor. If N is the number of sub-conductors in the

(5)

bundle, r is the radius of the sub-conductor and R is the bundle radius, show that

GMR = (N. r. R^{N-1}) 1/N

B) Explain the method of calculation of capacitance of multi-conductor transmission line. Show that the product of line capacitance and line inductance is inversely proportional to the square of the velocity of light.

(5)

Q3 A 735 kV line has the following details: N = 4, d = 3.05 cm, B = bundle spacing = 45.72 cm, height H = 20 m, phase separation S = 14 m in horizontal configuration. By the Mangoldt formula, the maximum conductor surface voltage gradients are 20 kV/cm and 18.4 kV/cm for the centre and outer phases, respectively. Calculate the SPL or AN in dB (A) at a distance of 30 m along ground from the centre phase (line centre). Assume that the microphone is kept at ground level.

(10)

- Q4 A) Develop the equations for electrical field, potential and potential difference in the vicinity of a line conductor. (5)
- (5)
- B) A sphere gap with the spheres having radii R = 0.5 m has a gap of 0.5 m between their surfaces. (i) Calculate the required charges and their locations to make the potentials 100 and 0.
 - (i) Calculate the required charges and their locations to make the potentials 100 and 0.(ii) Then calculate the voltage gradient on the surface of the high-voltage sphere.

- Q5 A) State and explain different formulae used to calculate the power loss due to corona on E. H.V. lines.
- (5)

(5)

B) Derive general expression for the charge-potential relations for multi conductor lines: Maximum Charge Condition on a 3- Phase Line.

	Describe the difference between a line spectrum and band spectrum for noise. What is the difference between a pure tone and broad-band spectrum?	(5)
	efine sub synchronous resonance. Show that the electrical resonant frequency of a compensated line is $= f_o \sqrt{m}$: where f_o is power frequency and m is degree of compensation.	(5)
Q7 A)	How switching surges initiated in EHVAC lines? Explain any one method used for switching surge reduction in case of EHVAC lines.	(5)
B)	What are the different methods of reactive power compensation in EHV AC lines.	(5)
Q8 A)	Explain various measures adopted in e.h.v. systems to reduce overvoltage magnitudes.	(5)
B)	Explain line loadability. On what factors the line loadability depends upon.	(5)

x-x-x