Exam.Code:1000 Sub. Code: 34993

## 2055

## M.E. (Computer Science and Engineering) Second Semester CS-8203: Soft Computing

(Common with ME Comp. Sci. Cyber Security CSN 8202)

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. 1 (Section-A) which is compulsory and selecting two questions each from Section B-C.

x-x-x

## Section-A

| Q1. | a) Compare Supervised, Unsupervised, and Reinforcement Learning in the context of ANNs.                                             | 10 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|----|
|     | b) Explain the Delta rule in supervised learning.                                                                                   |    |
|     | c) Differentiate between Fuzzy Systems and traditional AI models?                                                                   |    |
|     | d) List the advantages and limitations of Boltzmann Machines in deep learning.                                                      |    |
|     | e) What is the importance of maintaining population diversity in Genetic Algorithms?                                                |    |
|     | Section-B                                                                                                                           |    |
| Q2. | a) Define artificial intelligence. How can AI be used to detect and diagnose diseases such as cancer or COVID-19?                   | 6  |
|     | b) What are Genetic Algorithms? Describe the steps involved in a Genetic Algorithm with an illustrative example.                    | 4  |
| Q3. | The McCulloch-Pitts Neuron is a fundamental building block of ANN.                                                                  | 10 |
|     | a) Derive the mathematical model of a McCulloch-Pitts neuron and explain its activation function.                                   |    |
|     | b) Show how an MP neuron can implement the logical AND, OR, and NOT functions.                                                      |    |
| Q4. | a) Write short note on Learning Vector Quantization.                                                                                | 5  |
|     | b) Explain how the Madaline network (Multiple Adaline) improves upon Adaline and can classify                                       | 5  |
|     | linearly inseparable data.                                                                                                          |    |
|     | Section-C                                                                                                                           |    |
| Q5. | a) Explain the mathematical formulation of RBF neurons. How are basis functions selected in RBF networks?                           | 5  |
|     | b) Describe the learning process in Boltzmann Machines. Explain how weights are updated using the contrastive divergence algorithm. | 5  |
| Q6. | a) A factory produces 30% defective items. A quality test detects defects with 85% accuracy, but also                               | 5  |
|     | incorrectly identifies 10% non-defective items as defective. If an item is found defective, what is the                             |    |
|     | probability that it is actually defective?                                                                                          |    |
|     | b) Explain how a fuzzy logic-based washing machine determines the washing time based on the dirt level                              |    |
|     | of clothes. Make suitable assumptions and derive effective rule-base.                                                               | 5  |
| Q7. | a) Given a population with fitness values ( $F1 = 4$ , $F2 = 10$ , $F3 = 6$ , $F4 = 8$ ):                                           | 6  |
|     | i) Compute the selection probability for each individual.                                                                           |    |
|     | ii) Simulate Roulette Wheel Selection with a random number $r = 0.55$ .                                                             |    |
|     | b) Explain the role of Mutation in Genetic Algorithms. Why is it necessary?                                                         | 4  |