Exam. Code: 0906 Sub. Code: 33297

2055

B.E., Second Semester EC-203: Digital Design

EC-203: Digital Design
Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. 1 which is compulsory and selecting two questions from each Section.

Y-Y-Y

	a a a a a a a a a a a a a a a a a a a	
I		
a)	(1) Convert (65) ₇ to (?) ₅	
	(2) Add (23) ₈ and (67) ₈ .	
b)	Design XOR gate using NOR gates only.	
c)		
d)	Define the following terms for D to A converters: Resolution and Linearity.	
e)	What do you mean by Noise Margin and Propagation delay in logic families?	
		[5×2=10]
	SECTION A	
II.	(a) Convert the following function to POS form:	
	(1) F (A, B, C, D) = $\bar{C}D + AB\bar{C} + AB\bar{D} + \bar{A}\bar{B}D$	
	(2) Prove that (A+B) (\overline{A} +C) (B+C) = AC+B \overline{A}	[3×2=6]
	(b) Implement full adder using half adders.	[4]
III.	(a) Minimize the following expression using K-map and implement the circuit gates only.	using NAND
	$Y = \Sigma m (2,3,4,5,13,15) + \Sigma d (8,9,10,11)$	[5]
	(b) implement the following function using 4:1 MUX by taking A as input to MUX	
	$F(A, B, C) = \Sigma m (0, 1, 3, 5, 6)$	[5]
IV.	Convert SR flip flop to JK flip flop using excitation table.	[10]
**	SECTION B	
V.	(a) How many bits are required for a D to A converter, so that its FSO is 12.6 V and	l resolution is
	20 mV?	[4]
X7X	(b) Explain 4-bit bidirectional shift register with the help of suitable block diagram.	[6]
VI.	(a) Design and explain two-input TTL NAND gate with the help of suitable circuit of	liagram.
		[5]
	(b) Compare different Logic families on the basis of their performance characteristic	cs. [5]
VII.	Write note on following:	
	(a) Successive approximation type A to D converter.	[5]
	(b) Johnson Counter	[5]
	그들은 경험이 되어보면서 가장이 되었다. 강하는 사람들은 점점 보이고 있다면 하는데 되었다.	