Exam. Code: 0906 Sub. Code: 33294

2055

B.E., Second Semester ASP-X01: Applied Physics (Common with ECE, EEE, MEC)

Time allowed: 3 Hours Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Section.

x-x-x

Question | Attempt any five parts (2 x 5=10)

- (a) How do you understand reactance due to inertia and elasticity in the oscillations of a system.
- (b) Give the response of critically damped LC circuit oscillator to the external voltage.
- (c) All phenomena in wave optics are explicable by considering light solely as vibrations of electric field in space. Justify.
- (d) Write differential form of second Maxwell's second equation and draw inferences from it.
- (e) Is every crystal double refracting. Comment over this statement with justification.
- (f) Why is the output of ruby laser spiked.
- (g) Draw a neat and self-explaining block diagram of fiber-optic communication system.

SECTION A

Question II

- (a) What is Poynting vector and gives its significance. State Poynting vector theorem and express it in appropriate mathematical equation to interpretation of law of conservation of energy.
- (b) Show that in free simple harmonic oscillations, the average value of kinetic and potential energies, over a cycle of oscillation, are equal. What can be inferred from this fact.
 (4)

P.T.O.

Question III

- (a) Discuss various characteristics defining the quality of a damped harmonic oscillator. (5)
- (b) Show that the maximum potential drop across the inductor in resonant LCR circuit is Q times the applied emf and it occurs at frequency $\omega = \frac{\omega_0}{\sqrt{1-\frac{1}{2O^2}}}$ (5)

Question IV

- (a) Using Bio-Savert law derive the expression for Ampere circuital rule. What were the inconsistency in this rule and how was it resolved to frame the more generalised Ampere-Maxwell law. (6)
- (b) Derive Gauss' theorem from the Coulomb's law of electrostatics. Further justify why Gauss' law was preferred as first Maxwell equation. (4)

SECTION B

Question V

- (a) What is the phenomenon of dichorism. Discuss different kinds of polaroids based on this phenomenon used to polarize light giving merits and demerits of each of them.
 (5)
- (b) What is Kerr effect. Give one of its applications. (3)
- (c) A beam of light has intensity of 196 SI units is incident on a clear transparent medium, with energy reflection coefficient as 0.25, at an angle of 60°. Its reflected component suffers complete polarization. What is the intensity of the reflected beam of light and obtain the refractive index of the medium. (2)

Question VI

- (a) Discuss sequentially various processes involved in the generation of laser. (5)
- (b) Discuss the construction and working of a He-Ne laser. What are is merits and demerits. (5)

Question VII

- (a) Discuss various kinds of attenuations suffered by light pulses while propagating through the optical fiber. On the basis of these attenuations justify three optical windows used in fibre-optic communications. (5)
- (b) Discuss two applications of the optical fibre in the field of phase based sensors.

(5)