Exam. Code: 0940 Sub. Code: 33860

2015

B.E. (Mechanical Engineering) Fourth Semester MEC-406: Numerical Analysis

Time allowed: 3 Hours

Max. Marks: 50

NOTE:

Attempt <u>five</u> questions in all, including Question No. 1 which is compulsory and selecting two questions from each Part. Each question carries equal marks. Use of a simple calculator is allowed.

x-x-x

- (a) Define significant figures and explain their importance in scientific
 measurements. Describe the rules for determining the number of significant
 figures in a given value.
 - (b) Discuss the convergence criteria for root finding method. How do you determine when to stop iterating?
 - (c) Compare and contrast the Gauss elimination method with LU decomposition. In what situations would you prefer one method over the other?
 - (d) Explain Simpson's rules for numerical integration. How does it differ from the trapezoidal rule, and under what conditions is it more accurate?
 - (e) Discuss the finite difference method for solving partial differential equations.

PART-A

- 2. (a) What is the importance of series approximation in numerical analysis? What is truncation error in series approximation? How can it be minimized?
- (b) Given U = x y + y z + z x, find the relative percentage error in the computation of U at x = 2.104, y = 1.935, z = 0.845. (3 + 3 + 4)
- (c) Apply fixed point iteration method to approximate the value $\sqrt{42}$ correct to three decimal places.
- 3. (a) Define the condition number of a linear system of equations. Explain how it is computed and what it signifies about the stability of the system. Calculate the condition number of the matrix: $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$, using norm 2.
 - (b) Solve the following linear system using the Gauss-Seidel iteration method:

$$x + y + 3z = 5$$
; $10 x + y + z = 12$; $2x + 10y + z = 13$.

4. (a) Suppose you have a dataset with two predictor variables X_1, X_2 and one outcome variable Y:

<i>X</i> ₁	10	20	30	40	50
<i>X</i> ₂	5	10	15	20	25
Y	100	200	300	400	500

Build a multiple linear regression model to predict Y based on X_1 and X_2 . Also estimate the coefficients for each predictor variable.

(b) Explain how Lagrange's formula can be used to express the rational function as a sum of partial functions. Express $f(x) = \frac{x^2 + x - 3}{x^3 - 2 \cdot x^2 - x + 2}$ as a sum of partial fractions.

PART-B

- 5. (a) Determine the volume of the solid obtained by rotating the region bounded by $y = e^x$, x = 0, x = 2 and the x axis around the x axis. Use Simpson one-third rule with nine nodes.
 - (b) Using Richardson extrapolation formula to evaluate $\frac{dy}{dx}$ (1.6) for the following data:

					1.6				
У	1.3	1.7	2.3	3.2	4.7	6.2	8.1	9.2	9.8

6. (a) Use Runge-Kutta method to obtain y(1.1) given that y(1) = 1.2 and

$$\frac{dy}{dx} = 3x + y^2.$$

- (b) Solve the BVP: $\frac{d^2y}{dx^2} 4 \frac{dy}{dx} + 3 y = 0$, y(0) = 1, y(1) = 0, using the second order finite difference method with $h = \frac{1}{4}$.
- 7. Solve the Laplace equation: $u_{xx}+u_{yy}=0$ in $0 \le x \le 4$, $0 \le y \le 4$, given that u(0,y)=0, u(4,y)=8+2y, $u(x,0)=\frac{x^2}{2}$ and $u(x,4)=x^2$. Take h=k=1 and obtain the result correct to two decimal places.