Exam. Code: 0940 Sub. Code: 33856

2015

B.E. (Mechanical Engineering) Fourth Semester

MEC-402: Mechanics of Solids

Time allowed: 3 Hours

Max. Marks: 50

NOTE:

Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Part. Use usual notations and symbols for derivations. Assume suitably missing data if any. All questions carry equal marks.

x-x-x

Q.1 Provide brief and clear answers to the following:

- a. Give the expression for shear stress in a closed thin walled tube under torsion.
- b. What is the value of moment of inertia when the product of inertia is zero.
- c. Write the expression for the eccentricity of the neutral axis for a curved beam in pure bending.
- d. Provide the expression for the complementary energy for a linear elastic cable.
- e. Write the expression between critical stress and slenderness ratio.

Part A

- Q.2 Strains for a state of <u>plane stress</u> are given by $\varepsilon_x = -90\mu$, $\varepsilon_y = -30\mu$, and $\gamma_{xy} = 120\mu$. If the elastic constants for the structure are E=209 GPa and $\nu = 0.29$, determine the complete strain and stress matrices.
- Q.3 Determine the stress fields that arise from the following stress functions:

$$\Phi = Cy^2,$$

$$\Phi = Ax^2 + Bxy + Cy^2,$$

$$\Phi = Ax^3 + Bx^2y + Cxy^2 + Dy^3,$$

where A, B, C, and D are constants. Also suggest what states of stress the functions are suitable for. In addition check if the compatibility is satisfied.

Q.4 Determine the stress distribution in a thick walled cylinder with an inner diameter of 50mm and outer diameter of 150mm with $p_i = 35$ MPa and $p_o = 0$.

Part B

- Q.5 Consider a cantilever beam of length $L=1\mathrm{m}$ with a concentrated load $P=500\mathrm{N}$ applied at a distance $b=0.2\mathrm{m}$ from the free end. Taking the stiffness of the beam $EI=10\times10^4\mathrm{N}\cdot\mathrm{m}^2$, determine the vertical deflection of the free end.
- Q.6 Estimate the torque on a 10mm diameter steel shaft when yielding begins using (a) the Tresca and (b) the von Mises theory. The yield strength of steel is 140MPa.
- Q.7 A three element rectangular rosette strain gage is mounted on a steel specimen. For a particular state of loading of the structure the strain gage readings are $\epsilon_A = 200\mu$, $\epsilon_B = 900\mu$, and $\epsilon_C = 1000\mu$. Determine the values and orientations of the principal stresses and the value of the maximum shear stress at the point. Let $E = 200\,\mathrm{GPa}$ and $\nu = 0.285$.