Exam.Code: 0928 Sub. Code: 33650

2015

B.E. (Electronics and Communication Engineering) Fourth Semester

EC-401: Communication Engineering

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Part. Use of scientific calculator is allowed.

x-x-x

- I. (a) What do you mean by image frequency rejection ratio. (2)
 - (b) Under what conditions the bandwidth of FM signal is same as that of AM signal. (2)
 - (c) A Radio transmitter radiated 10KW and carrier power is 8.5KW. Calculate modulation index. (2)
 - (d) Define slope overload and granular noise in DM systems. How these noises can be eliminated. (2)
 - (e) Calculate the bandwidth of following angle modulated wave.

$$x(t) = 10\cos(2\pi \times 10^8 t + 200\cos 2\pi \times 10^3 t)$$
 (2)

Part- A

- II. (a) Explain Costa's receiver and its applications. (5)
 - (b) Prove that narrowband FM wave offers no improvement in SNR over AM. (5)
- III. (a) A modulated signal is given as

$$u(t) = 100\cos[200\pi t + 10\int_{-\infty}^{\tau} m(\tau)d\tau]$$
 where m(t) is

- (i) is this a PM or FM signal (ii) Find the modulation index and the estimated transmission bandwidth (iii) Find peak frequency deviation. (5)
- (b) Draw and explain PPM modulator and demodulator. (5)
- IV (a) Derive linear and non-linear model of PLL systems. (5)
 - (b) Derive low and upper sampling frequency conditions for proper reconstruction of band-Pass signals. (5)

Part-B

V. Consider Delta Modulation (DM) system designed to accommodate analog message signal limited to bandwidth W = 5KHz, A sinusoidal test signal of amplitude A = 1volts and frequency $f_m = 1$ KHz is applied to the system. The sampling frequency of the systems is 50KHz.

- (a) Calculate step size Δ required to minimize slope overload.
- (b) Calculate the signal to quantization noise ratio of the DM system. (10)
- VI. (a) Define raised cosine pulse. Draw its sketch in both time and frequency domains. How it is helpful in mitigating ISI.
- (b) What are the ways to minimize quantization error. Discuss noise-bandwidth trade-off in PCM systems.

 (5)
- VII.(a) Derive expression for figure of merit in SSBSC system.
 - (b) Consider signal shown below.
 - (i) Determine impulse response of filter matched to this signal and sketch it as function of time.
 - (ii) Plot the matched filter output as function of time.
 - (iii) What is the peak value of the output?

