Exam. Code: 0906 Sub. Code: 33297

2015 B.E., Second Semester EC-203: Digital Design

Time allowed: 3 Hours

Max. Marks: 50

NOTE:

Attempt <u>five</u> questions in all, including Question No. 1 (Section-A) which is compulsory and selecting two questions each from Section B-C.

x-x-x

Q.No.	Section-A (All questions are compulsory)	Marks
1	a) State and prove De Morgan's theorem.	
	b) What is the use of enable input in a decoder?	
	c) What is the difference between a ring counter and a Johnson counter?	
•	d) What are the three possible output states of a tri-state IC?	
	e) Why are voltage DACs are generally slower than current DACs?	10
	Section-B (Attempt any two questions)	
2	a) Obtain the minimal POS using Q.M method for func	tion
	$\pi M(0,1,4,5,9,11,13,15,16,17,25,27,28,29,31).\pi d(20,21,22,30)$	
	and implement using minimum number of NOR gates only if normal	and
	complementary inputs are available	. 5
	 b) Design a SOP circuit that will generate an odd parity bit for a 4-bit input. 	5
3	a) What is the inhibited condition in an S-R flip-flop? How it can be avoid	ded
	using J-K flip-flop?	5
	 b) List PLA table for a BCD to excess-3 code converter. 	5
4	a) Convert D to T and J-K to S-R flip-flop.	5
	b) Design a combinational circuit that compares two 4-bit numbers to chec	k if
	they are equal. The circuit output is equal to 1 if the two numbers are eq	ual
	and zero otherwise.	5
	Section-C (Attempt any two questions)	
5	a) For what minimum value of propagation delay in each flip-flop will a 10-	-bit
	ripple counter skip a count when it is clocked at 10 MHz?	5
	b) What is the disadvantage in a weighted type DAC? How this circuit can	be
	modified to overcome this disadvantage.	5
		7
6	a) Design and implement a synchronous 3-bit up/down counter using J-K fl	lip-
	flops. (If control M=0 down counting and M=1 up counting)	5
	b) Differentiate open collector and totem pole TTL. Explain how propagati	on
	delay is improved in totem pole TTL?	5
7	a) What are the characteristics of ECL family? Explain working of ECL circuit	
	an OR/NOR gate.	
		5
	b) What is a universal shift register? Explain working of a 4-bit universal sh	