Exam. Code: 0944 Sub. Code: 6753

2054

B.E. (Mechanical Engineering) Eighth Semester

MEC-803: Computational Fluid Dynamics

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Unit. All questions carry equal marks.

- 1. Attempt the following: -
 - (a) Discuss the merits of CFD compared to experimental method.
 - (b) Classify boundary conditions and give an example of each boundary condition.
 - (c) Show that the second order wave equation $\frac{\partial^2 u}{\partial t^2} = c \frac{\partial^2 u}{\partial x^2}$ is hyperbolic.
 - (d) What is the need for Upwind scheme? Explain.
 - (e) State the disadvantages of SIMPLE algorithm.

UNIT-I

- 2. (a) How can CFD be applied and used to improve cost-effective design procedures in the automotive industry?
 - (b) Derive the conservative and non-conservative forms of the continuity equation.
- 3. (a) Write the various governing equations used in CFD in conservation form, with a suitable example.
 - (b) Classify the following partial differential equations:

$$a_1 \frac{\partial u}{\partial x} + b_1 \frac{\partial u}{\partial y} + c_1 \frac{\partial v}{\partial x} + d_1 \frac{\partial v}{\partial y} = f_1, \ a_2 \frac{\partial u}{\partial x} + b_2 \frac{\partial u}{\partial y} + c_2 \frac{\partial v}{\partial x} + d_2 \frac{\partial v}{\partial y} = f_2,$$
where $u = u(x, y), v = v(x, y).$

- 4. (a) Explain forward, backward and central difference formulation by taking a suitable partial differential equations.
 - (b) What are the sources of errors in finite differences technique? What is meant by stability of an explicit scheme and how it is analyzed?

UNIT-II

5. Provide examples of real-world applications where the finite volume method is commonly used for solving diffusion and convection-diffusion problems, and explain why it is preferred in those areas.

- 6. (a) Compare and contrast the Upwind differencing scheme with the central differencing scheme in terms of stability and accuracy.
 - (b) Introduce the quadratic Upwind differencing scheme as an extension of linear Upwind scheme. Apply quadratic upwind differencing scheme to discretize any convection or diffusion problem along with its implementation.
- 7. (a) Provide an example of a tridiagonal matrix system of equations and demonstrate how the Thomas algorithm can be applied to solve it numerically.
 - (b) Explain the concept of the SIMPLE algorithm with pressure correction and velocity correction equations. What is the difference between SIMPLE and SIMPLER algorithms?

**_*_