2054

B.E. (Electronics and Communication Engineering) Eighth Semester

EC-810: Neural Networks and Fuzzy Logic

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. which is compulsory and selecting two questions from each Unit. Use standard notations for derivation.

- I. Attempt the following:
 - a) Define membership function.
 - b) List out the different activation functions used in artificial neuron model.
 - c) Discuss the functioning of biological neuron.
 - d) List out different types of associative memories.
 - e) Distinguish Auto associative & Hetero associative memories.
 - f) Realize 3-input NAND gate using McCulloch Pitts model.
 - g) List characteristics of artificial neural network.
 - h) Define momentum coefficient in back propagation learning.
 - i) Give Energy function in BAM.
 - j) Give the properties of fuzzy sets.

(10x1)

UNIT-I

- II. a) Explain the basic architecture of McCulloch Pitts neuron model and also realize
 3-input NAND gate using McCulloch Pitts model.
 - b) Explain types of activation function & Neural dynamics.

(6+4)

- III. a) Explain unsupervised learning in detail with block diagram.
 - b) Discuss different learning mechanisms used in artificial neural networks. (6+4)
- IV. a) How the hidden layer neurons influence representation of neural network?
 - b) Explain how noisy patterns are recognized in auto associative memory with an example. (2x5)

P.T.O.

Sub. Code: 6632

(2)

<u>UNIT - II</u>

V.	What is vector quantization? Discuss algorithms of ART 2.	(3+7)
VI.	Discuss Maxican Hat Networks.	(10)
VII.	a) Define membership function.	
	b) Give various ways of allotting membership functions for fuzzy sets.	(7+3)
	<i>X-X-X</i>	