Exam.Code:0924 Sub. Code: 6514

2054

B.E. (Information Technology)

Sixth Semester

PC-IT-601: Theory of Computation

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Unit.

x-x-x

- I. Answer the following:
 - a) What is the transition function of DFA? Explain with example.
 - b) Is there any advantage of using NFA's over DFA's?
 - c) Write regular expressions to represent identifiers of 'C' language.
 - d) What are recursive languages?
 - e) Does a pushdown automata has memory? Justify?

(5x2)

UNIT-I

- II. Explain Chomsky hierarchy for formal languages and analyze the languages proposed with the help of examples. (10)
- III. a) Design a DFA that recognizes string over {a,b} where every a's immediately followed by b's.
 - b) Consider the following E-NFA. Compute the E-closure of each state and find its equivalent DFA.

δ/Σ	3	a	b	С
→p	Ø	{p}	{q}	{r}
q	{p}	{q}	{r}	Ø
*r	{q}	{r}	Ø	{p}

Here *r denotes the final state.

(2x5)

IV. a) Find the regular expression that denotes the language accepted by the following DFA using ARDEN'S Theorem.

b) Examine whether the language $L=(0^n1^n|n>=1)$ is regular or not. Justify your answer. (2x5)

(2)

Sub. Code: 6514

UNIT - II

V. a) Convert the following CFG into Chomsky Normal Form

S->bA|aB

A->bAA|aS|a

B->aBB|bS|b

b) Design a PDA accepting the following language by empty stack.

(2x5)

 $L = \{a^n b^m a^n | m, n \ge 1\}$

- VI. Design a Turing machine which computes the following function $f(w) = ww^R$, where R is the reverse of the string and $(w \in (a,b)^*)$. (10)
- VII. Write notes on the following:
 - a) Multi-tape Turing Machine
 - b) Undecidability

(2x5)