Exam.Code: 0936 Sub. Code: 6676

2054

B.E. (Electrical and Electronics Engineering) Sixth Semester PC-EE-604: Signals and Systems

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Section.

x-x-x

Q.1a)	What is the significance of Hilbert transform in communication systems?	
b)	Differentiate between odd and even signals.	(5×2)
c)	What is a Dirac delta function? Enlist its properties.	
d)	Establish the relation between the Unit step and Unit impulse signals.	
e)	tate the condition for convergence of Fourier Series.	
	Section A	
Q.2a)	A Discrete Time system is described by the difference equation	(4)
	y[n] +0.1 $y[n-1] - 0.2$ $y[n-2] = x[n] + x[n-1]$. Find the impulse response of the system.	
b)	Define the term system. Differentiate causal and non-causal systems	(3)
c)	State and prove the time shifting property of a system.	(3)
Q.3a)	Determine whether the following function is periodic or not. If so find the period.	(5)
	$x(t)=3\sin 200\pi t + 4\cos 100t.$	
b)	What is an LTI system? Explain its properties. Derive an expression for the Transfer	(5)
	function of an LTI system.	
Q.4a)	Find the Fourier series coefficients for the following signal, $x(t)=1+\cos(2\pi t)$	(5)
b)	Explain Parsevel's theorem for energy and power signals	(5)
	Section B	
Q.5	State and prove sampling theorem for Band limited Signals. What is meant by	(10)
	aliasing?	
Q.6a)	State and prove the following property of Fourier transform: Differentiation, Scaling	(5)
b)	Given that x(n) has Fourier transform X(ejw), express the Fourier transform of the	(5)
	following signals in terms of $X(ejw)$: $y(n) = x(1-n) + x(-1-n)$	
Q.7a)	Compute the discrete-time Fourier transform of the following signal.	(6)
	x[n] = (1/4) n u[n]	
b)	What is the difference between the continuous time signals and analog signals?	(4)
	Discuss with examples.	