Exam.Code: 0942 Sub. Code: 6733

## 2054 B.E. (Mechanical Engineering) Sixth Semester MEC-604: Heat Transfer

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Part.

x-x-x

- 1 a State the assumptions on which Fourier's law of conduction is based.
  - b Draw configurations of annular fin and straight rectangular fin.
  - c Differentiate between pool boiling and forced convection boiling.
  - d How are heat exchangers classified?
  - e State and explain Stefan-Boltzmann law.

## PART-A

- Derive an expression for one dimensional time dependent heat conduction with 10 internal heat generation and constant thermal conductivity in cartesian coordinate system. Reduce it as:
  - (i) Poisson equation,
  - (ii) Fourier equation,
  - (iii) Laplace equation.
- 2 a A hollow sphere of inside radius 30 mm and outside radius 50 mm is electrically 5 heated at its inner surface at a constant rate of 10<sup>5</sup>W/m<sup>2</sup>. The outer surface is exposed to a fluid at 30°C, with heat transfer coefficient of 170 W/m<sup>2</sup>.K. The thermal conductivity of the material is 20 W/mK. Calculate inner and outer surface temperatures.
  - b Explain electrical analogy by considering Thermal resistance network for a 5 hollow sphere subjected to convection heat transfer at inner and outer surfaces.
- 4 a If a thin and long fin, insulated at its tip is used, show that the heat transfer from 6 the fin is given by

$$Q_{fin} = h P K A_c (T_0 - T_{\infty}) \tanh (mL)$$

Where symbols or variables in above equation are being used in their conventional or standard sense.

- b Write down temperature distribution and heat loss equations for fins of uniform 4 cross-section (not derivation)
  - a) insulated tip b) infinitely long fin

## PART-B

5 a Using dimensional analysis, derive an expression for heat transfer coefficient in 6 forced convection in terms of Nusselt number, Reynolds number and Prandtl numbers.

Contd.....P/2

- b Regarding the relative growth of velocity and thermal boundary layers in a fluid, 4 how, for laminar conditions, thickness of thermal boundary layer is related to hydrodynamic boundary layer.
- 6 a The temperature of a body of area 0.1 m<sup>2</sup> is 900 K. Calculate the total rate of 7 energy emission, intensity of normal radiation in W/(m<sup>2</sup>sr), maximum monochromatic emissive power, and wavelength at which it occurs.
  - b What does the view factor represent? When is the view factor from a surface to 3 itself not zero?
- 7 a Differentiate between film condensation and drop-wise condensation. In which 3 case is the heat transfer higher? Why?
  - b In a certain double pipe heat exchanger hot water flows at a rate of 5000 kg/h and gets cooled from 95°C to 65°C. At the same time 50000 kg/h of cooling water at 30°C enters the heat exchanger. The flow conditions are such that overall heat transfer coefficient remains constant at 2270 W/m² K. Determine the heat transfer area required and the effectiveness, assuming two streams are in parallel flow. Assume for the both the streams C<sub>p</sub> = 4.2 kJ/kg K.