Exam. Code: 0934 Sub. Code: 6661

2054

B.E. (Electrical and Electronics Engineering) **Fourth Semester** PC-EE-401: Electrical Machine - II

Max. Marks: 50 Time allowed: 3 Hours

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Part. Missing data (If any) can be appropriately

x-x-x

Q1	Explain briefly	
A)	Explain the concept of alignment torque. Using this concept discuss the condition under which reluctance torque will be developed in an electrical machine having cylindrical stator and salient-pole rotor.	(2)
B)	What is meant by load angle of an Alternator?	(2)
C)	What do you mean by armature reaction reactance?	(2)
D)	State why small fractional kilowatt ac series motors are called universal motors.	(2)
E)	Explain need of drooping characteristics for parallel operation of alternators.	(2)
	Part A	
Q2 A)	Develop and draw' space and time-phasor diagrams for a cylindrical-rotor machine in case the alternator operates a t an internal power factor of (i) zero lagging (ii) zero leading and (iii) lagging.	(5)
B)	A 2000 kVA, 11 kV, 3-phase star-connected alternator has synchronous impedance of $Z_s = 0.3 + j$ 5 Ω per phase. It delivers full load current at a power factor of 0.8 lagging and normal rated voltage. Compute the terminal voltage for the same excitation and	(5)
Q3 A)	current at 0.8 Pf leading. A 100 H.P., 500V, three phase star connected synchronous motor has a resistance and synchronous reactance of 0.03 Ω and 0.3 Ω , per phase respectively. Calculate for full load and 0.8 power factor leading, emf per phase and total mechanical power developed assuming an efficiency of 93%.	(5)
B)		(5)
Q4 A)		(5)
. B)		(5)
	Part B	
Q5 A)	Show that for alternators running in parallel, the division of load between them is governed mainly by the speed load characteristics of their prime movers.	(5)
B)	What do you mean by the synchronization of the alternators? Describe any one method of synchronization in detail.	(5)
Q6	Explain the construction of the brushless synchronous motor in detail with the help of suitable circuit diagram. Derive the expressions for torque and speed of a BLDC motor with appropriate phasor and equivalent circuit representations.	. (10)
Q7 A)		(5)
B		(5)