Exam. Code: 0940 Sub. Code: 6716 ₩

### 2054

# **B.E.** (Mechanical Engineering) **Fourth Semester**

**MEC-406: Numerical Analysis** 

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. 1 which is compulsory and selecting two questions from each Unit. Each question carries equal marks. Use of a simple calculator is allowed.

\_\*\_\*\_\*\_

#### 1. Attempt the following: -

- Define total error and explain how it arises from round-off error, truncation (a) error, and other sources. Discuss the procedures for minimizing total numerical error in computational algorithms.
- Compare and contrast the Secant method with Newton's method. In what (b) situations would you prefer one over the other?
- Explain the concept of matrix inversion using Gauss elimination. Provide (c) an example and discuss any limitations of this approach.
- Define numerical differentiation. What are its limitations? Describe (d) Richardson extrapolation in the context of numerical differentiation.
- Explain the Crank-Nicoloson method for solving parabolic PDEs. (e)

## **UNIT-I**

- Explain how absolute error changes according to multiplication and 2. (a) division of two approximate numbers. (3)
  - (b) If  $u(x, y, z) = 10 x^3 y^2 z^2$ and error in x, y, z are 0.03, 0.01, 0.02 at x = 2, y = 2, z = 1, calculate the relative and percentage (3) errors in the calculation of it.
  - (c) Find the root of the equation: $\cos x - x = 0$  correct to three decimal places (4) using the bisection method. How many iterations are required to achieve this much accuracy?
- 3. Solve the following linear system by the LU decomposition method: (a) 2x + y + 4z = 12; 8x + 3y + 2z = 20, 4x + 11y + z = 33
  - (b) Explain the Gauss-Seidel iteration method for solving systems of linear equations. Solve the following linear system:

x - y + 5z = 7; x + 4y - z = 6; 6x + y + z = 20.

4. (a) Suppose you have the following datasets representing the height y of a bouncing ball over time x:

| x | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| у | 1 | 3 | 5 | 3 | 1 | 3 |

Suppose that the height of the ball follows a sinusoidal pattern due to its bouncing motion. Fit the best sinusoidal function to this data.

(b) Using the following table, find f(x) as a polynomial in the powers of (x-6):

| Х    | -1  | 0 | 2 | 3 | 7   | 10  |
|------|-----|---|---|---|-----|-----|
| f(x) | -11 | 1 | 1 | 1 | 141 | 561 |

### UNIT-II

- 5. (a) Evaluate  $\int_{1}^{2} \sqrt{1 + \cos^{2}x} \ dx$  with the aid of trapezoidal and Simpson one-third rule.
  - (b) Use Richardson extrapolation to estimate the first derivative of  $y = \cos x$  at  $x = \frac{\pi}{4}$  using the step sizes of  $h_1 = \frac{\pi}{3}$  and  $h_2 = \frac{\pi}{6}$ .
- 6. (a) Using Runge-Kutta fourth order method, solve y(0.2) given that

$$\frac{dy}{dx} = x y + y^2, y(0) = 1.$$

- (b) Solve the BVP  $\frac{d^2y}{dx^2} y = 0$  with  $\frac{dy}{dx}(0) = 0$  and y(1) = 1.
- 7. Using the Bender-Schmidt formula to solve the heat conduction problem:

$$\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2}$$
 with the conditions  $u(x, 0) = 4x - x^2$  and  $u(0, t) = u(4, t) = 0$ .