Exam.Code:0928 Sub. Code: 6585

2054

B.E. (Electronics and Communication Engineering) Fourth Semester

EC-406: Analog Electronic Circuits

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Unit.

x-x-x

- I. Attempt the following:
 - a) Differentiate between a single stage and multistage amplifier.
 - b) Differentiate between common mode gain and differential mode gain of an operational amplifier.
 - c) Discuss the merits and demerits of a crystal oscillator.
 - d) Explain the concept of virtual ground.
 - e) What is a current mirror? What are its applications in analog circuits? (5x2)

UNIT - I

- II. a) Explain why the transistor gain varies with high frequency in an amplifier?
 - b) What are the coupling methods in cascading two amplifiers? What is a basic difference between cascading and cascoding? Give examples. (5,5)
- III. a) Draw and explain all the stages of an operational amplifier. Give four characteristics of an ideal operational amplifier.
 - b) What is a single input an dual output differential amplifier?

 Differentiate between passive load and current mirror load differential amplifier. (5,5)
- IV. a) What is negative feedback in an amplifier? Derive the expression for a negative feedback amplifier. What are the types of negative feedback?
 - b) Differentiate between miller theorem and Norton theorem in an amplifier. (5,5)

P.T.O.

UNIT - II

- V. a) Explain the working of a logarithmic operation using an operational amplifier.
 - b) Discuss how a logarithmic amplifier is different to an anti logarithmic amplifier?
 - c) Design a circuit which can evaluate the expression $(v_1+v_2)^2$, where v_1 , v_2 are two input analog inputs. (4,3,3)
- VI. a) Explain the working of a differentiation operation using an operational amplifier.
 - b) Discuss how a differentiation amplifier is different to an integration amplifier?
 - c) Design a circuit which can evaluate the expression $\int (v1-v2)$, where v_1 , v_2 are two input analog inputs. (4,3,3)
- VII. Write notes on:
 - a) Clippers and their two applications
 - b) Hartley oscillator

(5,5)