Exam.Code: 0928 Sub. Code: 6583

2054

B.E. (Electronics and Communication Engineering) Fourth Semester

EC-401: Communication Engineering

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Unit. Use of scientific calculator is allowed.

x-x-x

- I. Attempt the following:
 - a) What will be the power in each sideband of AM wave if power of carrier is 176w and with 60% Modulation?
 - b) What do you mean by Companding?
 - c) What do you mean by Quantization noise. How it can be minimized.
 - d) In A FM system, if m_f is doubled by halving modulating frequency. What will be the effect on maximum deviation?
 - e) What is the relation between phase modulation and frequency modulation? (5x2)

UNIT - I

- II. a) What are the different parameters to characterize AM receivers? Give significance of each Parameter.
 - b) Prove that FM wave contains infinite number of sidebands?

(2x5)

- III. a) Explain FM threshold effects and its reduction methods.
 - b) Explain PWM systems. How the generation and demodulation is done. How PWM signals are converted to PPM signals. (2x5)
- IV. a) Explain FM detection using PLL method.
 - b) The signal $x(t) = 2\cos 200\pi t + 6\cos 180\pi t$ is ideally sampled at a frequency of 150 samples per second. The sampled version $x_{\delta}(t)$ is passed through a unit gain ideal LPF with a cut-off frequency of 110 Hz. What frequency components will be present in the output of the LPF? (2x5)

UNIT - II

- V. a) A PCM system uses a step size of Δ. If the quantization error is uniformly distributed, determine the mean-square value of the quantization error.
 - b) Discuss the limitations of Delta modulation. How it can be overcome? (2x5)
- VI. a) Draw encoding waveforms (i) NRZ unipolar (ii) NRZ polar (iii) NRZ bi-polar (iv) RZ for 10110100010 data steam.
 - b) Explain Raised Cosine pulse. How it is useful to control ISI.

(2x5)

- VII. a) Derive Figure of Merit (FoM) in FM Systems.
 - b) The figure shows a finite energy signal $\Phi(t)$. (i) Sketch the impulse response $h_{opt}(t)$ of the optimum filter matched to $\Phi(t)$ and (ii) Determine the value of the output of the matched filter at t=T, assuming noise is zero and input is $\Phi(t)$. (2x5)

x-x-x