2054

M. Tech. (Microelectronics)
Second Semester
MIC-204: Advanced Memory Technology and Design

Time	allowed: 3 Hours Max. M	Marks: 50
NOTI	E: Attempt <u>five</u> questions in all, including Question No. I which is compuselecting two questions from each Unit.	ulsory and
	x-x-x	
I.	Answer the following:-	
	a) Why CMOS technology is most suitable for memory circuits?	
	b) Explain Hierarchical Memory Systems.	
	c) Write note on Hot-electron Injection.	
	d) What are Design Approaches in memory chip design?	
	e) Briefly discuss significance of S/N ratio in memory design.	(5x2)
	<u>UNIT - I</u>	
II.	a) Explain the basic operation of 1-T cell.	
	b) Explain working of any NMOS dynamic logic circuit.	(2x5)
III.	Write notes on the following	(283)
	a) Scaling Law	(4)
	b) Bootstrap Driver	(4)
	c) CMOS Latch-Up	(3)
IV.	Describe the role of W	(3)
	Describe the role of V _{BB} generator and reasons why its needed.	(10)
	<u>UNIT -II</u>	
V.	a) List different redundancy techniques used to realize fault tolerance in organizations. Discuss any one technique in detail.	memory
	b) What is Address Multiplexing and its basic operation?	(2x5)
		P.T.O.

Sub. Code: 7115

(2)

VI.	Write a	short note	on follo	wing
-----	---------	------------	----------	------

- a) Multi-divided data line
- b) On-chip testing circuits
- c) The address buffer
- d) Refresh-Relevant Circuits
- e) Word divider (5x2)

VII. Explain the Standard DRAM with block diagram and read-write cycle. (10)

x-x-x