2054

M. Tech. (Microelectronics) Second Semester

MIC-203: Analog and Mixed Signal Device Design

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Unit.

x-x-x

- I. Attempt the following:
 - a) Write a short note on successive approximation multiplier with block diagram.
 - b) Explain about CMOS sample and Hold circuit.
 - c) Explain the working simple MOS current mirror.
 - d) What is slew rate and derive the linear settling response.
 - e) What is common mode response and CM gain with its significance?

(5x2)

UNIT - I

- II. What is an analog multiplier? Explain the concept of 2-quadrant analog multiplier. Discuss the significance of Gilbert Cell over 2-quadrant multiplier and its applications. (10)
- III. a) Derive and explain the small signal gain of source follower.
 - b) Calculate the small signal output resistance and Body effects included in source follower.

(2x5)

IV. Evaluate the voltage gain of a MOSFET based two input differential amplifier.

Differentiate between a MOS based and bipolar based differential amplifiers. (10)

UNIT - II

- V. What is need of compensation in op-amp amplifiers? Describe any two techniques used for compensation in two stage op-amp amplifiers. (10)
- VI. What are Widlar and Wilson current sources? Explain their working and temperature dependence. (10)

P.T.O.

VII. a) Design a circuit to obtain a current I_D of 80 μA in fig 1. Find the value required for R and find the DC voltage V_D . NMOS transistor has V_t =0.6V, $\mu_n C_{ox}$ =200 $\mu A/V^2$, L=0.8 μm and W=4 μm (Assume λ =0).

Fig 1

b) Derive the integral and differential non-linearity of the voltage scaling DAC. Also, illustrate the application with an example. (2x5)