Exam.Code: 0906 Sub. Code: 6241

2054

B.E. (Biotechnology), Second Semester ASC-X01: Applied Chemistry (Common with CSE, IT & Civil)

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Unit.

x-x-x

- 1. (a) Write difference between conformational isomerism and configurational isomerism.
 - (b) Why tetrahedral complexes form high spin complexes?
 - (c) How third law can be deduced from the Nernst theorem?
 - (d) What are catalytic promoter and catalytic inhibitors? Give example in each case.
 - (e) How many modes of vibrations are IR active in CO2 and H2O?

(5x2)

UNIT - I

- (a) What is conformational analysis? Discuss the stability order of various cyclohexane conformations in detail.
 - (b) Describe the various methods to distinguish between cis- and trans-isomers. 5
- 3. (a) Discuss crystal field splitting in the case of octahedral complexes.

(b) Explain the formation of inner-orbital and outer-orbital complexes on the basis of valence bond theory by taking suitable example.

- 4. (a) Briefly explain the effect of solvent on λ_{max} for π - π * and n- π * electronic transitions.
 - (b) Calculate λ_{max} for the following compounds using Woodward-Fieser rules; 4

(c) How symmetrical and unsymmetrical alkynes can be distinguished on the basis of infrared spectroscopy?

3

<u>UNIT - II</u>

5.	(a) Calculate w, q and ΔE when 2 moles of an ideal gas expand reversibly and isotherm.	nermally
	from 2 to 10 litres at 25°C.	3
	(b) Explain the working of Carnot's cycle. Derive an expression for the efficiency of	of a
	reversible heat engine working between temperatures T_1 and T_2 ($T_2 > T_1$).	5
	(c) What is heat capacity? Prove that for a monoatomic gas $C_v = 3/2$ R.	2
6.	(a) Discuss the mechanism of hydrogenation of alkenes using Wilkinson's catalyst. 5	
	(b) Derive Michaelis-Menten's equation to study the rate of enzyme catalyzed reactions.	
		5
7.	(a) Discuss the free radical mechanism for the polymerization of ethene.	5
	(b) Write the difference between chain-growth and step-growth polymerization.	2
	(c) A polymer mixture consists of 50 molecules of molecular weight 500 and 100	molecules
	of molecular weight 1000. Calculate number-average and weight-average	molecular

weight of the mixture.