Exam.Code:0925 Sub. Code: 6541

2074

B. E. (Information Technology) Seventh Semester **PCIT-701: Digital Signal Processing**

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Part.

x-x-x

Q.1a Find the DTFT of the unit step sequence.

- b Give the relationship between DFT and z transform.
- c Write computation efficiency of FFT over DFT.
- d What are the basic building blocks of realization structures?
- e List special features of DSP architecture.

(5x2)

PART A

Q.2a. Check the system: $y(n) = 3y^2(n-1) - nx(n) + 4x(n-1) - 2x(n+1)$ for linearity, time variance and causality. Explain the meaning of all these properties as well.

- b. A causal discrete time LTI system is described by: y(n) (3/4)y(n-1) + (1/8)y(n-2) = x(n), find
- System function H(z)
- ii) Impulse response h(n)
- iii) Step response u(n)

(5,5)

- Q.3a. Find the circular convolution of the following sequences $x(n) = \{0,1,2,3\}$ and $y(n) = \{2,1,1,2\}$.
 - b. Compute the 8 point DFT of the sequence $x(n) = \{1/2, 1/2, 1/2, 1/2, 0, 0, 0, 0\}$ using the radix-2 DIT Algorithms. Follow exactly the signal flow graph and calculate all intermediate values.
- What is meant by the Transposed form? Obtain the direct form-II and transposed direct form-II Q.4 structures of the system with transfer function

$$H(z) = \frac{3 + 3.5z^{-1} + 0.5z^{-2} - 1.3z^{-3}}{1 + 0.2z^{-1} + 0.3z^{-2} - 2z^{-3}}$$

(10)

PART-B

- Q.5a. Comparison of FIR and IIR filters.
 - b Find Hz using the impulse invariant transformation for the following analog system function.

$$H_S = \frac{}{(s+0.5)(S^2 + 0.5s + 2)}$$
 (5,5)

Q.6a. What are the applications of FIR filters?

- b. Explain the design of filters using the windows technique. (5,5)
- Draw and explain the memory architecture of the TMS320C3X processor. Q.7 (10)