Exam.Code: 0943 Sub. Code: 6742

2074

B.E. (Mechanical Engineering)-Seventh Semester MEC-702: Automatic Controls

Time allowed: 3 Hours

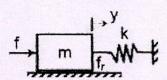
Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Part.

x-x-x

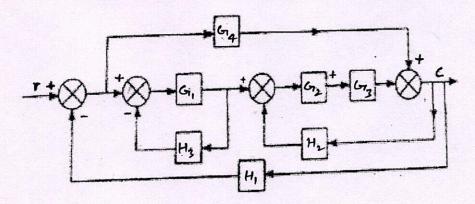
- 1 Attempt the following
 - a) Draw diagram for summing junction system.
 - b) What is the significance of feedback linearizing effect?
 - c) What is potentiometer?
 - d) Write Nyquist criterion and define its role in stability.
 - e) Write nth order differential equation for state space representation.

5*2


Part A

- 2 a) Define the static and dynamic systems, give some examples for each type.
 - b) Solve the differential equation using Laplace transformation

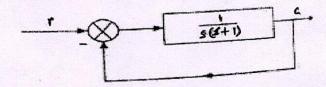
5


 $\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 3y(t) = 6 \quad \text{where} \quad y(0) = 0 & \frac{dy}{dt}(0) = 0$

3 a) Drive transfer function $G(s) = \frac{Y}{F}(s)$ of the given system and give the mathematical expressions 5 for the system gain, natural frequency and damping ratio.

- b) What is synchro control transformer? What is electrical zero position of synchro detector?
- 5
- 4 a) Draw signal flow diagram and derive expression for c/r using mason's formula.

4


b) Explain in brief ON-OFF control action.

5

Part B

5 a) Draw Nyquist diagram for the control system, with block diagram.

5

b) Explain transient and steady state response

5

6 Write features and procedure for plotting Root Locus Plot.

10

10

7 Using Routh-Hurwitz criterion determine the relation between K and T so that unity feedback control system whose open loop transfer function given below is stable

$$\frac{K}{S[S(S+10)+T]}$$