2074

B.E. (Computer Science and Engineering) Third Semester CS-303: Discrete Structures

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Section.

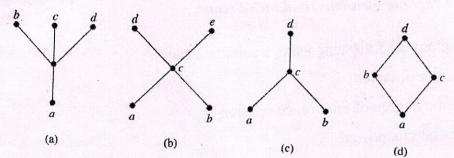
x-x-x

- 1. Briefly explain the following using a suitable example:
 - (a) Counting principles
 - (b) Order and degree of recurrence relation
 - (c) Existential Quantifier
 - '(d) Poset

(e) Group.

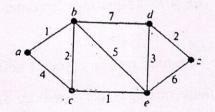
(5x2=10)

Section-A


- (a) Show that X⊆Y implies XxZ ⊆ YxZ.
 (b) Show that the function f (x) = ax + b from R to R is invertible, where a and b are constants, with a not equal to 0, and find the inverse of f.
 (c) Find the symmetric difference of the set of computer science majors at a school and the set of mathematics majors at a school.
 (d) Prove that for all non-negative real numbers x,y,z if x²+y²=z² then x+y>=z using proof by contradiction.
 (5)
- 3. Check the validity of the following arguments using rules of inference of propositional logic:
 - (i) If you send me an e-mail message, then I will finish writing the program. If you do not send me an e-mail message, then I will go to sleep early. If I go to sleep early, then I will wake up feeling refreshed. If I do not finish writing the program, then I will wake up feeling refreshed.
 - (ii) Somebody in this class enjoys whale watching. Every person who enjoys whale watching cares about ocean pollution. Therefore, there is a person in this class who cares about ocean pollution.

 (5+5=10)
- (i) Let R be the relation on the set of real numbers such that xRy if and only if x and y are real numbers that differ by less than 1, that is |x y| < 1. Show that R is not an equivalence relation.

Contd.....P/2


(ii) Determine whether the posets represented by each of the Hasse diagrams (a), (b), (c), (d) in the figure given below have a greatest element and a least element. Justify your answer.

(5)

Section-B

- (a) Solve the recurrence relation: x_n 5x_{n-1} + 6x_{n-2} = 2ⁿ + n, n>=2, x₀=1, x₁=1 by the method of generating functions.
 - (b) Find the number of different outcomes when three dice are rolled. (5)
- 6. (a) Contrast between Euler graph and Hamiltonian circuit with suitable examples. (5)
 - (b) Discuss Dijkstra's algorithm to find the shortest path for the given graph. (5)

- 7. (a) Suppose that there are eight runners in a race. The winner receives a gold medal, the secondplace finisher receives a silver medal, and the third-place finisher receives a bronze medal. How many different ways are there to award these medals, if all possible outcomes of the race can occur and there are no ties?
 - (b) Prove that the fourth roots of unity 1, -1, i, -i form an abelian multiplicative group?