Exam.Code: 0905 Sub. Code: 6192

2074

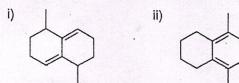
B.E., First Semester ASC-X01: Applied Chemistry

(Common with CSE, ECE, MEC, EEE, IT and CIVIL)

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Section.


x-x-x

- 1. (a) Why work done in a reversible process is always maximum?
 - (b) What type of molecules can produce $n-\pi^*$ ransitions?
 - (c) How many isomers are possible in pentan-2,3,4-triol?
 - (d) How symmetry of a polymer affects the crystallinity of a polymer?
 - (e) What do you mean by CFSE in the context of crystal field theory?

 $2 \times 5 = 10$

SECTION-A

- (a) How many conformations are possible in cyclohexane. Draw their structures. Also explain their stability order.
 - (b) Discuss various types of methods to resolve a racemic mixture. 5
- 3. (a) Discuss crystal field splitting in the case of octahedral complexes. 5
 - (b) What are inner-orbital and outer-orbital complexes? Give example in each case. 5
- 4. (a) Explain the following terms that are related to IR spectroscopy?
 - i) Fundamental transitions ii) Hot bands iii) I
 - Hot bands iii) Fermi resonance 6
 - (b) Calculate λ_{max} for the following compounds;

SECTION-B

5. (a) Calculate the enthalpy of combustion of benzene, given that enthalpies of formation of C₆H₆ (l), H₂O and CO₂ (g) are 49.0, -285.8 and 393.5 kj/mol respectively.
5
(b) Derive expressions for w, q, ΔH and ΔE in the case of isothermal reversible expansion of an ideal gas.
5

(a) Discuss the step-wise mechanism of hydrogenation of alkenes using Wilkinson's catalyst.
(b) Derive Michaelis-Menten's equation.

7. (a) Calculate number average and weight average molecular weight of a given sample of polyvinyl chloride having 100 molecules of 5000 molecular mass, 150 molecules of 6000 molecular mass and 200 molecules of 10000 molecular mass.
5
(b) Explain the free radical mechanism for the polymerization of styrene.
5