Exam.Code:0936 Sub. Code: 6676

2014

B.E. (Electrical and Electronics Engineering) Sixth Semester

PC-EE-604: Signals and Systems

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Section.

x-x-x

		(2.5)	
Q.1a)	Sketch the waveform of following signal: $x(t) = u(t) - u(t-3)$.	(2×5)	
b)	Explain when the system said to be memory less with an example.		
c)	Relate the impulse signal, step signal, ramp signal.		
d)	Find the Nyquist rate for the signal $x(t) = 1 + \cos 10 \pi t$, in Hz.		
e)	Check whether the given system is time invariant and linear.		
	$y(t) = x(t^2) + x(t)$		
	Section A	1.0	
Q.2a)	Check whether the given system is linear or non-linear: $y(t) = \sin(x(t+2))$	(4)	
b)	Differentiate between even and odd signals.	(3)	
c)	State the Dirichlet's conditions for the Fourier transform to exist? 0	(3)	
Q.3a)	Compute the Fourier transform of the signal, x(t)=e-t u(t).	(4)	
b)	State and prove the following properties of continuous time Fourier transform: Scaling, Convolution.	(3)	
c)	What is a Dirac delta function? Enlist its properties.	(3)	
Q.4a)	Find the constant a0 of the Fourier series for function $f(x) = x$ in $0 \le x \le 2\pi$.	(5)	
b)	Distinguish between discrete time signals and digital signals. Explain.	(5)	
	Section B		
Q.5a)	State and prove the duality property of DFT.	(4)	
b)	What is Hilbert Transform? Write its mathematical expression.	(6)	
Q.6	Given that x(n) has Fourier transform X(ejw), express the Fourier transform of the	(10)	
	following signals in terms of $X(ejw)$: $y(n) = x(1-n) + x(-1-n)$	120	
Q.7a)	When does aliasing occur? What is anti-aliasing filter?	(5)	
, b)	State and prove sampling Theorem. What is the Nyquist sampling rate?	(5)	

