Exam.Code:0942 Sub. Code: 6731

2014 B.E. (Mechanical Engineering) Sixth Semester MEC-602: Finite Element Methods

Time allowed: 3 Hours Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Part.

x-x-x

	i. Describe the displacement functions of any 1d and 2d element.	(2x 5		
1	ii. What is the significance of lumped mass matrix? Write lumped mass matrix of ld linear element.	= 10)		
	iii. Write temperature load vector for 1d linear element.			
	iv. Draw a two noded beam element with degree of freedom indicated on it			
	v. Write the significance of Guyan reduction.			
	Part A			
2	a) Explain the elimination method of imposing boundary conditions with suitable example. In axially loaded cases, how do you find the support reactions after getting required displacements?	(4)		
	b) Consider a two bar structure as shown in the diagram. Determine the displacement of node #2. Also calculate the stresses at each element. (u1=0). Given: E=30GPa, L1=2m, L2=3m, L_1 L_2	(3)		
	A= 10^{-2} m ² , u ⁻ = 4 mm (=u3). L ₁ L ₂ c) Derive and plot the shape functions for a 2D three-node triangular element.	(3)		
3	 a) Explain the situations where axisymmetric analysis can be used. What are non zero stress and strain components of axisymmetric elements. Explain. 	(4)		
	b) The figure shows a system of springs. Find the global stiffness matrix and put it in the form of $F=Kq$. $k^{(1)}$ 2 u_1 u_1 u_1 u_2 u_2 u_3 u_3 u_3 u_4 u_4 u_5 u_5 u_5 u_5	(3)		
	F ₂ F ₃ F ₄ c) Discuss the concept of Galerkin's Method in FEM.	(3)		

4	coordin	te the stiffness matrix for the triangular element with the (x,y) nates of the nodes are $(0,-4)$, $(8,0)$ and $(0,4)$ at nodes i, j, k. e plane stress condition E= 200 GPa, Poisson's ratio = 0.35	(8)
	b) Differe and 2-c	ntiate 1-d two noded linear elements, 1-d three noded quadratic elements I three noded triangular elements w.r.t. displacement function and strain.	(2)
		Part B	
5	diagran displac elemen	e two bar truss shown in the n, Determine the nodal ements and stresses in each t. Also find support reactions.	(8)
		750mm 500mm	
	b) Explai	n the steps involved in analysis of beams.	(2)
6	a) Describ comput	be about the mesh refinement and explain how it affect the accuracy and tational cost of FEM solutions.	(5)
	b) Discuss the concept of the eigenvalue problem in finite element analysis, including the formulation of the eigenvalue equation and its solution.		
7	a) What is the need for optimization in FEM. State various important considerations while formulating an optimization problem		
	b) Explair	the topology optimization in FEM taking suitable example.	(5)