Exam.Code:0922 Sub. Code: 6484

2014 B.E. (Information Technology) Fourth Semester PCIT-403: Operating System

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Part.

	and selecting two questions from each Part.							
	x-x-x							
1.	Define the followings:							
	a) Long term scheduler							
	b) System call							
	c) Stateful Server							
	d) Index file allocation							
	e) Free Space Management							
	PART - A							
2.	a) What is critical section problem? How are semaphores help in handling this problem	? Explain						
	with the help of example.	(6)						
	b) Define process control block with diagram.	(4)						
3.	(a) Why page size is always a power of 2? Can we run a process whose size is bigger than main							
	memory size? How?	(4)						
	(b) In the following system:	(4+2).						

	MAX NEED			ALLOCATION				RESOURCE DETAILS		
	R1	R2	R3	R1	R2	R3		R1	R2	R3
P1	3	6	8	2	2	3	Total Allocated	5	4	10
P2	4	3	3	2	0	3				
P3	3	4	4	1	2	4	Total Exist	7	7	10

- (i) Is the current allocation state safe? If yes, what is the safe sequence?
- (ii) Would an additional request from process P1 (1,1,0) be granted in current state or not?
- 4. (a) Consider a system with 400 bytes of physical memory and page size of 100 bytes.
 - (i) Give the reference string for the following sequence of logical addresses from a 900 byte programme:

120, 405, 10, 234, 750, 223, 409, 345, 760, 858, 664.

- (ii) Calculate the number of page faults that would occur using LRU and Optimal replacement algorithms. (7)
- (b) What is thrashing? Discuss its impact on CPU utilization.

(3)

Sub. Code: 6484

(2)

PART - B

- 5. Suppose that a disk drive has 5000 cylinders, numbered 0 to 4999. The current head position is at cylinder 143. The queue of pending requests is: 86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130 What is the total distance that the disk arm moves to satisfy all the pending requests for each of the following disk scheduling algorithms:

 (10)
 - i) SSTF
 - ii) LOOK
- 6. (a) Discuss in detail the deadlock detection and recovery techniques for distributed environment with example.
 - (b) Explain the different types of cache updating policies.

(7+3)

7. Write short note on any two of the followings:

(10)

- a) Process Migration
- b) Bully Election Algorithm
- c) Unix file system