Exam.Code:0940 Sub. Code: 6716

2014 B.E. (Mechanical Engineering) Fourth Semester MEC-406: Numerical Analysis

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. 1 which is compulsory and selecting two questions from each Part. Use of simple calculator is allowed. All questions carry equal marks.

x-x-x

- 1. (a) Discuss the sources and consequences of truncation error in iterative methods. Explain method (s) of minimizing them.
 - (b) Explain the convergence criteria used to determine the convergence of iterative methods for solving nonlinear equations. Also, discuss its importance.
- (c) Write down different interpolation formulas. Enumerate their limitations.
- (d) Explain the trapezoidal rule for numerical integration. How is it derived and what is its order of accuracy?
- (e) Explain Euler's method for the numerical solutions of Odes. What are its advantages and limitations?

PART-A

- (a) Prove that the relative error in a product of two nonzero numbers does not exceed the sum of the relative errors of the given numbers.
 - (b) Find the maximum absolute error in the value of p+q+r+s, if $p=10.00\pm0.02$, $q=0.0495\pm0.001$, $r=12391\pm3.55$, $s=31250\pm101$.
- (c) Find the cube root of 48 correct to four decimal places by using the iteration method. (3+3+4)
- 3. (a) Apply Muller's method to find the root of the equation: $\cos x x e^x = 0$.
 - (b) Explain the differences between direct and iterative methods for linear system of equations. Solve the following system by method of LU decomposition:

$$2x + y + 4z = 12$$
; $8x + 3y + 2z = 20$; $4x + 11y - z = 23$.

4. (a) Fit a straight line by the method of least squares to the following data:

X	1	2	3	4	5
у	15	70	140	250	380

(b) Using the following table, find f(x) as a polynomial in x and find f(5):

x	f(x)		
-1	3		
0	-6		
3	39 822		
6			
7	1611		

PART-B

5. (a) Find $y^1(x)$ from the table given below and hence find $y^1(0)$ and $y^{11}(0)$:

x	0	1	2.	3	4
у	4	8	15	7	6

- (b) Use Simpson's one-third rule to find $\int_0^{0.6} e^{-x^2} dx$ by taking seven ordinates.
- 6. (a) Apply Runge-Kutta method to solve: $\frac{dy}{dx} = -2x y$, y(0) = -1 and find y(0.2) with h = 0.1.
 - (b) Solve the boundary value problem for x = 0.5 by finite difference method:

$$\frac{d^2y}{dx^2} + y + 1 = 0, y(0) = y(1) = 0.$$

7. Why is Crank-Nicolson's scheme called an implicit scheme? Using Crank-Nicolson's implicit method, solve $16 \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, 0 < x < 1, t > 0, given that u(x,0) = 0, u(0,t) = 0, u(1,t) = 100 t, compute u for a one-time step.