Exam.Code:0928 Sub. Code: 6586

2014

B.E. (Electronics and Communication Engineering) **Fourth Semester**

EC-407: Probability and Random Processes

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Section.

x-x-x

Q.1a)	Axiomatic approach of probability theory overcomes the limitations of classical approach. Discuss with suitable examples.	(2×5)
b)	What is the difference between mutually exclusive events and independent events? Illustrate with suitable examples.	
c)	Define central limit theorem.	
d)	Find the capacity of the Binary Symmetric Channel when probability p is given as 0.6.	
e)	Why flicker noise is called low frequency noise?	
	Section A	
Q.2a)	Define the term expectation. If X is a continuous random variable with pdf	(5)
	$f(x) = \frac{2}{x^3} ; x \ge 1$	
	0 : x < 1	
	Find the Expectation of x .	
b)	State and prove the Bayes Theorem.	(5)
Q.3	What is Rayleigh Distribution?	(10)
Qis	Find the probability that at most 5 defective fuses will be found in a box of 200 fuses, if experience show that 2 percent of such fuses are defective.	
Q.4	Enlist the properties of distribution function for continuous random variable. Let X be a	(10)
•	continuous random variable with pdf	
	$f(x) = ax \qquad ; 0 \le x \le 1$	
	$a ; 1 \le x \le 2$	
	$-ax + 3a \qquad ; 2 \le x \le 3$	
	0 ; otherwise	
	a. Determine the constant a;	
	b. P(X≤ 1.5)	
05)	Section B	(5)
Q.5a)	A signal is bandlimited to 8kHz. The signal is quantized in 6 levels of a system with respective probabilities as 0.2, 0.1, 0.1, 0.05, 0.05 and 0.05. Calculate the entropy and	(3)
	the rate of information.	
b)	What is Johnson Noise? In a cascade amplifier, show that the contribution to overall noise-figure is primarily by the first stage and contribution by succeeding stages becomes smaller and smaller.	(5)
Q.6a)	"For a fixed signal power, and in the presence of white Gaussian Noise, the channel capacity approaches an upper limit with Bandwidth increased to infinity." Explain the related Trade-off.	(5)
b)	Verify that: $H(XY) = H(Y/X) + H(X)$ where H represent the entropy and X, Y are transmitter and receiver respectively.	(5)
Q.7	Apply the Huffman Coding to find the efficiency of the following message ensemble: $[X] = [x1, x2, x3, x4, x5, x6, x7]$ $[P] = [0.4, 0.2, 0.12, 0.08, 0.08, 0.08, 0.04]$	(10)