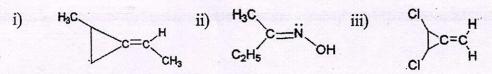
Exam.Code: 0906 Sub. Code: 6241

2014

B.E. (Biotechnology), Second Semester ASC-X01: Applied Chemistry (Common with CSE, IT & Civil)

(Common with CSE, IT & Civil


Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. 1 which is compulsory and selecting two questions from each Part.

x-x-x

- (a) Explain why π-σ* and σ-π* transition in electronic spectroscopy do not occur. [2]
 (b) Define catalytic promoter and catalytic inhibitor by giving one example each [2]
 (c) What is the difference between isotactic and syndiotactic polymer. [2]
 (d) State the limitations of crystal field theory. [2]
 (e) Write different isomers of C₃H₆O considering it has a cyclic structure [2]
 - PART-A
- 2. (a) Calculate the bond order of N₂ and CN⁺ with MO diagram [4]
 - (b) Calculate the CFSE and magnetic moment for $[Fe(H_2O)_6]^{3+}$, $[Ni(CN)_4]^{2-}$ [4]
 - (c) Explain by taking at least one example to prove why valence bond theory is deemed to fail [2]
- 3. (a) Which of the following will show geometrical isomerism give reason. [3]

(b) Define meso compounds [1] (c) Assign E, Z notation to the following compounds [4]

(d) Draw the most stable conformer of the following compounds. [2]

$$H_3C-\overset{H}{C}$$

[5]

4. (a) Discuss the effect of the solvent on π - π * and n- π * transition. [3] (b) On the basis of IR spectroscopy, how can you distinguish between the following: (i) Alkane, alkene and alkyne (ii) Aldehyde and ketone [3] (c) Calculate the λ_{max} for the following compounds [4] (ii) PART-B 5. (a) The heat of solution of ammonia at 25 °C was found to be -11.04 kcal. Calculate the heat of solution at 348K. Given that the heat capacity of N2, H2 and NH3 are 6.80,6.77 and 8.86 cal/degree/mol respectively. [3] (b) Explain the working of Carnot cycle. How it is used to calculate the efficiency of an heat engine. [4] (c) Derive Gibbs-Helmholtz equation w.r.t.to Gibb's free energy. [3] 6. (a) Write the mechanism for hydrogenation of alkene using Ni/Pd as well as willinson's catalyst. [5] (b) Derive Michaelis-Menton's equation for enzyme catalysis. When the reaction rate is of first order? [5] 7. (a) Differentiate thermoplastic and thermoset. [2] (b) Explain the mechanism of Zeigler Natta Polymerization. [3]

(c) Discuss detailed properties and uses of polyamides and polyester