2014

B.E. (Bio-Technology) Second Semester

APH-203: Quantum and Statistical Physics (Common with IT & CSE)

Time allowed: 3 Hours

Question 1: Attempt any five.

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Part.

**_*_

(b) (c)	 What is the role of compensating plate in Michelson –Morley experiment? Why can't we observe Compton effect with visible light? Tell whether \(\psi = e^{inx}\) is an eigenfunction corresponding to the operator \(d^2/dx^2\) or not, where n=1,2,3 corresponding eigen value. How quantum theory of hydrogen atom modified Bohr's orbital model? 	Find the	
(0)	Differentiate between symmetric and antisymmetric wave functions. Explain the concept of zero point energy for a trapped particle using uncertainty principle.		
(t) (g)	Calculate the number of different ways of arranging 6 fermions in 3 phase space cells. (5x	2=10)	
	Part A		
Que	estion 2		
(n)	Explain the Einstein's concept of time dilation. Deduce the necessary relation.	(4)	
(b)	A person observes an atom moving with a velocity of 0.5c. The atom then emits a β - particle which has a velocity		
	0.9 c relative to the atom in the direction of its motion. What is the velocity of the β - particle as observed by the person?		
(c)	Derive expressions for space -time Lorentz transformation equations. Show that under certain condition	ons, these	
	equations become identical with Galilean transformation.	(4)	
	estion 3		
(a)	Explain the energy distribution of energy in a blackbody spectrum. Give an account of the attempts made		
	various laws to explain the spectrum.	(5)	
(b)) What were the various experimental observations of Photoelectric effect which could not be explain basis of classical theory of light? How did Einstein explain this phenomenon?	ed on the (5)	
	or classical moory of light from the Milater Copyright and providence.	(-)	
1200	uestion 4	***	
	Show that matter waves travel with the velocity of the particle with which it is associated.	(4)	
) Calculate the debroglie wavelength of a proton whose energy is 12.8 MeV (m_a = 1.67 x 10 ⁻²⁷ kg).	(2)	
(c)	Establish the time independent form of Schrodinger equation in operator form.	(4)	
	Part B		
1.00	uestion 5		
(a)	 Using Schrodinger equation, find out the normalized wave function for a particle confined to move along x axis i an infinitely rigid box of length L. Consider an electron in an infinitely rigid box of width 20 pico meter. Find the 		
	first excited energies of electron in eV.	(5)	
(b)) What is the difference between a quantum and classical harmonic oscillator? Show that harmonic		
	problem is in accordance with correspondence principle.	(5)	
Qu	uestion 6		
(n)) Describe Stern Gerlach experiment, giving the importance of the results.	(5)	
) What do you mean by spin orbit coupling? Show that magnetic moment due to spin motion of electron	is always	
	one Bohr magneton.	(5)	
Qu	uestion 7		
) Discuss the contribution of electrons in the specific heat of solids.	(3)	
) In copper there is on e free electron per atom. Calculate the Fermi energy of free electrons in copp	er. Given	
	atomic weight of Cu= 63.5 g/mol: density of Cu= 8.94 g/cm ³ .	(2)	
(c)) Treating ideal gas us a system governed by classical statistics, derive the Maxwell Boltzmann dist molecular speeds.	ribution o. (5)	
	**_		