2124

B.E. (Mechanical Engineering) Seventh Semester

MEC-702: Automatic Controls

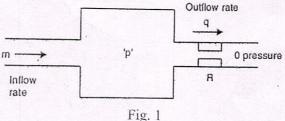
Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. 1 which is compulsory and selecting two questions from each Part.

- 1 Attempt the following
 - Define the static and dynamic systems, give example for each type.
 - Write the Laplace transform for Impulse input signal.
 - What are the advantage of having signal flow graph using Mason's gain formula?
 - Define:
 - i. Stability, ii. Relative stability
 - Calculate error at corner frequency to the term $(1 + j\omega T) \pm N$.

5*2


5

5

5

Part A

Figure 1, shows a gas pressure system. Volume of the vessel = 1.2 m³, Gas temp. = 257°C, Gas resistance $R_1 = 1.8 \times 10^5 \text{ NS/Kgm}^2$, Find the transfer function of the system relating 'p' and 'm', 'p' being the pressure in the vessel and 'm', the inflow mass flow rate. Gas constant $\bar{R} = 297$ J/Kgk. Outflow rate

- What is feedback? What type of feedback is preferred for control system?
- Determine the transfer function C / R from the block diagram as shown in Fig. 2 3

Fig. 2

- What are the basic elements of mechanical rotational systems? Write its force balance equation.
- A unity feed-back control system has its open-loop transfer function given by

5 5

G (s) = $\frac{(4s+1)}{4s^2}$, Determine an expression for the time response, when the system is subjected to Unit impulse input function.

P.T.O.

	(b)	A second order control system is represented by $\frac{\theta_0(s)}{T(s)} = \frac{1}{(Js^2 + fs + K)}$, transfer function.	5
		Where θ_0 is the proportional output and T is the input torque. A step input of 10 Nm is applied to the system and test results are given; $M_p = 6\%$, $t_p = 1$ sec and the steady state value of the output is 0.5 radian. Determine the values of J, f and K. Part B	
5	(a)	The closed loop transfer function of a system is $T(s) = (S^3 + 4S^2 + 8S + 16) / (S^5 + 3S^4 + 5S^2 + S)$	5
		+ 3). Calculate number of poles in the right and left half-plane	
	(b)	Find the condition for the stability of forward transfer function of a unity feedback system $G(s) = K(s^2 + 1)/(s + 1)(s + 2)$.	5
6	(a)	Explain input signals applied for time response control system.	5
	(b)	What do you mean by virtual instrumentation? Why is Virtual Instrumentation necessary?	5
7	(a)	Write the Steps to Create a Sub-VI.	5
		Explain the potentiometer error detector with circuit diagram.	5