Exam. Code: 0933 Sub. Code: 33741

2124

B.E. (Electrical and Electronics Engineering) **Third Semester**

ES-EE-301: Network Analysis and Synthesis

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Part. Assume any missing data.

x-x-x

1. (a) Define tree, twigs, links as in graph theory, with example.

(b) Find δ and ω_n for $T = \frac{1}{s^2 + 5s + 10}$

(c) What is significance of super mesh in networks?

(d) State and prove differentiation theorem of Laplace Transform.

(e) Write limitations of maximum power transfer theorem.

(5*2)

(5, 5)

PART-A

- 2. (a) A current $I = 2\angle 0^{\circ}$ A flows between terminals 1 and 2 in network, when $V = 10\angle 90^{\circ}$ is applied between terminals 3 and 4. If voltage $V = 25 \angle 45^{\circ}$ is applied between 1 and 2, what current will flow between terminals 3 and 4. State the theorem used.
- (b) Rg is variable resistance between 2Ω and 55Ω . What value of Rg results in maximum power transfer to load RL?

3. (a) What is isomorphic graph? Show the following graph to be isomorphic.

(b) Draw a tree for the following network and find i₁.

4. (a) Determine z-parameters of the network shown. An identical network is connected in series with this. Determine z-parameters for the overall network and verify the results by direct computation.

(b) Derive y-parameters in terms of h parameters. For two-port networks.

(5, 5)

PART-B

5. (a) Find stability using R-H criterion:

$$s^4 + s^3 + 2s^2 + 2s + 3 = 0$$

(b) Write properties and necessary conditions for transfer function.

(5, 5)

6. Synthesis electric network using Cauer and Foster forms:

$$Z(s) = \frac{2(s+1)(s+4)}{s(s+2)}$$
(10)

- 7. (a) What are positive real functions? Write and explain their properties.
 - (b) The circuit was initially in steady state with switch S closed. At the instant when S is opened, find value of i(t).

(5, 5)