2124

B.E. (Electronics and Communication Engineering) Third Semester

EC-307: Electronics Devices and Circuits

Time allowed: 3 Hours

Max. Marks: 50

(1)

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Section. Use of scientific calculator is allowed.

x-x-x

Q1. Answer the following: -

- (a) Why transistor is called current controlled device? (1)
- (b) What is power MOSFET? (1)
- (c) What is the theoretical maximum efficiency of a Class C amplifier? (1)
- (d) What is the significance of the arrow-head in the transistor symbol? (1)
- (a) What is the significance of the arrow-head in the transistor symbol:
- (e) Why silicon type transistors are more often used than germanium type? (1)
- (f) What is Shockley equation? (1)
- (g) Why is there a maximum limit of collector supply voltage for a transistor? (1)
- (h) How α and β are related to each other? (1)
- (i) What is the difference between output and transfer characteristics of the MOSFET? (1)
- (j) How does a thermistor's response time affect its performance?

SECTION A

- Q2. (a) (i) A germanium transistor is to be operated at zero signal $I_C = 1$ mA. If the collector supply $V_{CC} = 12$ V, what is the value of R_B in the base resistor method? Take $\beta = 100$.
 - (ii) If another transistor of the same batch with β = 50 is used, what will be the new value of zero signal I_C for the same R_B ?
 - (b) In base bias method, how Q-point is affected by changes in V_{BE} and I_{CBO} . (5)
- Q3. (a) What do you understand by 'Bias stability' of a transistor? Why is it necessary? (5) Explain the working of self-bias circuit for common emitter BJT.
 - (b) What are the advantage and disadvantages of different thermistors. (5)
- Q4. Annph silicon transistor has $V_{CC} = 6 \text{ V}$ and the collector load $R_C = 2.5 \text{ k}\Omega$. Find: (10)
 - The maximum collector current that can be allowed during the application of signal for faithful amplification.
 - (ii) The minimum zero signal collector current required

SECTION B

Q5. A common-emitter amplifier with an external capacitor C_C connected across the base and the collector of the transistor is shown in Figure. Determine the upper cutoff frequency f_H of the amplifier. $(g_m = 5 \text{mA/V}, r_\pi = 200 \text{K}\Omega, C_\pi = 1.5 \text{ pF}$ and $C_\mu = 0.5 \text{ pF})$

- Q6. (a) Differentiate push pull and complementary symmetry class B amplifier. (5)
 - (b) An amplifier is assumed to have a single pole high frequency transfer function. The rise time of its output response to a step function input is 35 nsec. What is the upper 3 dB frequency (in MHz) for the amplifier to a sinusoidal input?
- Q7. (a) A 1 pF capacitor is available. Choose the inductor values in a Hartley oscillator so (5) that f = 1 MHz and $m_v = 0.2$.
 - (b) A JFET has the following parameters $I_{DSS} = 32 \text{mA}$; $V_{GS(\text{off})} = -8 \text{V}$; $V_{GS} = 4.5 \text{V}$. Find (5) the drain current.