2124

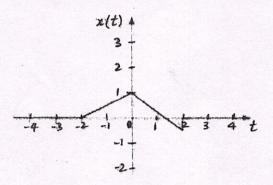
B.E. (Electronics and Communication Engineering)

Third Semester

EC-302: Signals and Systems

Time allowed: 3 Hours

Max. Marks: 50


NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Section. Use of scientific calculator is allowed.

Q.1 Attempt all questions:-

- (a) Define Gibbs Phenomenon. (2)
- (b) State Time Shifting property in relation to Fourier series. (2)
- (c) Define continuous time unit step and unit impulse. (2)
- (d) What is the Aperture effect? (2)
- (e) What is zero input Response? (2)

Section- A

Q. 2(a) Sketch the even & odd parts of the following signal shown in figure below. (5)

- (b) Construct the following signals. (5)
- (i) $10 \left[u(t-3) u(t+3) \right]$
- (ii)3r(t+2)-6r(t+1)+3r(t-1)+3u(t-3)
- Q.3 (a) Derive the necessary expression to represent the function (t) using Trigonometric Fourier Series. (5)
 - (b) Compute the convolution sum of x[n]=u[n]-u[n-8] & h[n]=u[n]-u[n-5]. (5)
- Q.4 (a) Find out Fourier transform of

$$x(t) = te^{-at}u(t) (5)$$

(b) Determine the Nyquist sampling rate and Nyquist sampling interval for the signals given by (i) x_1 (t) = $2\text{sinc}(300\pi t)$ and (ii) x_2 (t) = $\text{sinc}(70\pi t)\text{sinc}(90\pi t)$... (5)

Section-B

- Q.5 (a) What is the relation between impulse response and Transfer function? (5)
 - (5)

(b) Calculate inverse laplace Transform for following.
(i)
$$X(s) = \log\left(\frac{s+1}{s+2}\right)$$
 (ii) $X(s) = \frac{s^2 + 2s + 5}{(s+3)(s+5)^2}$ ROC: Re(s) >-3

- Q.6 (a) Explain Region of convergence in Z-Transform. (5)
 - **(b)** Calculate Z-Transform of the $X(n) = n^2 u(n)$. (5)
- Q.7 (a) Explain State transition matrix and its importance. (5)
 - (b) Discuss the relation between Fourier transform and Laplace Transform. (5)