Exam.Code:1014 Sub. Code: 35201

2124

M.E. (Mechanical Engineering) First Semester

MME-101: Advanced Engineering Mathematics

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, selecting atleast two questions from each Section. Use of Simple calculator is allowed. All questions carry equal marks.

SECTION-A

- 1. (a) Locate and classify the regular and singular point(s) of the differential equation: $x(x+1)^2(x-1)\frac{d^2y}{dx^2} + x^2\frac{dy}{dx} + (x^3-1)y = 0$. Find solution about x = 0.
- (b) Find two linearly independent solutions of $(x+2)^2 \frac{d^2y}{dx^2} + (x+2)\frac{dy}{dx} 4y = 0$ about x = -2. Also find its general solution.
- 2. (a) State and prove Rodrigue's formula. How is this formula useful?
 - (b) Prove that $(1-x^2) P'_{n-1}(x) = n[x P_{n-1}(x) P_n(x)]$.
- 3. (a) Prove that: $\frac{d}{dx}[J_n^2(x) + J_{n+1}^2(x)] = 2\left[\frac{n}{x}J_n^2(x) \frac{(n+1)}{x}J_{n+1}^2(x)\right]$.
 - (b) State and prove the orthogonality of Bessel's functions.
- 4. (a) Define modified Bessel functions of first and second kinds. Solve: $x \frac{d^2y}{dx^2} + 2 \frac{dy}{dx} + \frac{1}{2}y = 0$ in terms of Bessel's function.
- (b) Find the eigenvalues and eigen functions of the Strum-Liouville problem:

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + (\lambda + 1)y = 0, y(1) = 0, y(0) = 0.$$

SECTION-B

- 5(a) Solve the IVP: $\frac{dy}{dx} = z + x$; $\frac{dz}{dx} = y^2 + x + z$, y(0) = 0, z(0) = 0 with the help of Picard method. Obtain only first three approximation and find values of y(0.1) and z(0.1). the
 - (b) Solve the second order IVP: $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y^2 = \sin x$ with initial conditions: $y(0) = 1, \frac{dy}{dx}(0) = 1$ using Runge-Kutta method of order 4 to find y(0.5).

- 6. Solve the BVP: $\frac{d^2y}{dx^2} x\frac{dy}{dx} + 2y = x + 4$; $0 \le x \le 0.6$ subject to boundary conditions: $\frac{dy}{dx}(0) = 1$, y(0.6) = 1.96, by taking step size h = 0.2. Use central difference approximation for the differential equation and derivative boundary condition.
- 7. (a) Describe the similarities and difference between explicit and implicit finite difference methods.
 - (b) Solve the Laplace equation on a rectangular domain using finite difference method with Dirichlet boundary conditions.
- 8. Solve the boundary value problem $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subjected to the conditions: u(0,t) = 0 and $u(x,0) = \sin \pi x$.