2053

B.E. (Information Technology) Sixth Semester

PCIT-602: Machine Learning

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Unit.

x-x-x

- I. Answer the following:-
 - (a) What is the overfitting? How to reduce the overfitting?
 - (b) Write formula for MSE and RSS?
 - (c) What is the role of boundary in a classifier?
 - (d) What will be the equation of boundary in a classifier for two features with 0.7 threshold?
 - (e) What is the use of reducing dimensions in the data?

(5x2)

UNIT - I

- II. (a) What is gradient descent algorithm? Write formula to update weights using gradient descent algorithm? Explain importance of gradient of error and learning rate with the help of an example.
 - (b) What is the importance of regularization? What will be effect on value of ' θ ' for, $\lambda=0$ and $\lambda=\infty$? (2x5)
- III. Perform classification on following data using classification error method of decision tree algorithm

X1	T	T	T	T	T	F	F	F	Т
X2	F	T	T	F	T	F	F	F	F
Y (Actual output)	Yes	Yes	Yes	Yes	No	Yes	No	No	No

(10)

IV. Design XNOR gate using neural network. Choose appropriate weights and finally draw the network. (10)

P.T.O.

UNIT - II

V. Make clusters using single link cluster method for the distance matrix below:-

	P1	P2	P3	P4	P5
P1	0				
P2	9	0			
P3	3	7	0		
P4	6	5	9	0	
P5	11	10	2	8	0

VI. (a) Derive the equations of mean and variance from logliklihood equation

(b) Derive the value of logliklihood for multivariate Gaussian. (2x5)

VII. Find out principal components for the following data

$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \quad and \quad Y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$
 (10)

x-x-x