Exam.Code:0936 Sub. Code: 6720

2053

B.E. (Electrical and Electronics Engineering) Sixth Semester

EE-612: Signals and Systems

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Unit.

x-x-x

- I. Attempt the following:
 - a) What is Hilbert Transform? Write its mathematical expression.
 - b) Explain when the system said to be memory less with an example.
 - c) Relate the impulse signal, step signal, ramp signal.
 - d) State the conditions for the ROC of causal and stable system function H(z).
 - e) Check whether the given system is time invariant and linear.

$$y(t) = x(t^2) + x(t)$$
 (5x2)

UNIT-I

- II. a) Check whether the given system is linear or non-linear: $y(t) = \sin(x(t+2))$
 - b) Differentiate between even and odd signals.
 - c) State the Dirichlet's conditions for the Fourier transform to exist. (4,3,3)
- III. a) Compute the Fourier transform of the signal, $x(t) = e^{-t}u(t)$.
 - b) State and prove the following properties of continuous time Fourier transform: Scaling, Convolution.
 - c) What is a Dirac delta function? Enlist its properties? (4,3,3)
- IV. a) State and prove sampling theorem. What is the Nyquist sampling rate?
 - b) Find the constant a_0 of the Fourier series for function f(x) = x in $0 \le x \le 2\pi$
 - c) Distinguish between discrete time signals and digital signals. (4,3,3)

UNIT - II

V. a) Find the DTFS coefficients of the following DT periodic signal and plot the magnitude and phase spectrum, $x(n) = \sum_{K=-\infty}^{\infty} = \delta(n-8k)$

(2)

b) Determine the causal signal x(n) having the z-transform using partial fraction method

$$X(z) = \frac{1}{(1+z^{-1})(1-z^{-1})^2}$$
 (6,4)

VI. a) Find the time signal corresponding to the following Laplace transform:

$$X(s) = \frac{4s^2 + 8s + 10}{(s+2)(s^2 + 2s + 5)}$$

b) Given the z-transform pair $3^n u[n] \leftrightarrow X(z)$, use the z-transform property to determine the time domain signals corresponding to the following z-transform:

$$Y(z) = X(z)X(9z) \tag{6,4}$$

VII. a) The Fourier series coefficient a_k/X_n of a periodic signal with fundamental period T are as follows

$$a_K \text{ or } X_n = \frac{2}{jk\pi}$$

Using the properties of Fourier series, find the Fourier series Coefficients for the following signals: x (2t - 1) and $e^{j2\omega_0 t}x(t)$

- b) State and prove the duality property of DFT.
- c) Enlist four properties of ROC of Laplace Transform. Discuss with suitable examples. (4,3,3)