Exam.Code: 0936 Sub. Code: 6717

2053

B.E. (Electrical and Electronics Engineering) Sixth Semester

EE-601: Computer Aided Power System Analysis

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Part. Assume missing data, if any.

x-x-x

- 1. (a) What is the effect of acceleration factor in load flow analysis?
 - (b) Discuss the advantages of per unit system.
 - (c) Define the short circuit capacity of power system.
 - (d) Draw the zero sequence network of the given system

Fig 1

(e) Define critical clearing angle in power system stability.

(5"*2=10)

PART-A

2. (a) Draw the per unit reactance diagram for power system as shown in given Fig. use a base of 50 MVA and 13.8 kV on G1.

G1: 20 MVA, 13.8 kV, X = 10%

G2: 20 MVA, 16 kV, X = 10%

G3: 30 MVA, 13.8 kV, X = 10%

T1: 25 MVA,220/13.8 kV, X= 15%

T2: 3 single phase unit each rated 10 MVA, 127/16 kV, X=8%

T3: 35 MVA, 220/22kV, X= 10%

Fig 2

(b) Derive an expression for Power angle equation for 2-bus system.

(7,3)

- A 50 Hz synchronous generator is capable of supplying 400 MW of power. It is connected to a large power system and delivering 80 MW when a 3-phase occurs at the terminals, determine the time in which fault must be cleared if the maximum power angle is to be 85°, assume H=7MJ/MVA on a 100 MVA base. Also find clearing angle.
 - (b) Discuss speed-governor characteristics of a generating unit. How is frequency maintained for these characteristics for under and overload conditions.

- 4 (a) What is AGC? How it plays a role in power system operation?
 - Find the bus voltages at node 2 and 3 using Gauss-Seidel algorithm after first (b) iteration. Also find line flows for the given data. All given values of impedances are on 100 MVA.

Table1-Busdata

Bus No	PG (MW)	QG (MVAR)	PD (MW)	QD (MVAR)	V (p.u)	δ(degree)
1	-		-1000	- (IVIVAN)	1.04	10
2 .	-	- 220	200	30	Control of the contro	0
3	200					•
			100	0	1.02	0

Table 2-Linedata

Line charging admittance /2		
j0.05 J0.02 J0.01		

(3,7)

PART-B

Formulate Z bus using step by step algorithm for the given Fig 5

(10)

Fig 3

Two alternators in parallel and supplying synchronous motor which is receiving 60 MW power at 6. 0.8 pf lagging at 6.0 kV. Compute the fault current when a single line to ground fault occurs at the middle of the line through a resistance of 4.033 $\boldsymbol{\Omega}$. Data is as:

G1 and G2: 11 kV, 100 MVA, $X^{+}=0.2$ pu, $X=X^{0}=0.1$ pu

T1: 180 MVA, 11.5/115 kV, X=0.1 p.u

T2: 170 MVA, 6.6/11.5 kV, X=0.1 p.u

M: 6.3 kV, 160 MVA, $X^{+}=X^{-}=0.3$ p.u , $X^{0}=0.1$ pu

Line: $X^+=X^-=30.25\Omega$, $X^0=60.5 \Omega$

(10)

(10)

7. Perform short circuit analysis for a three phase solid fault on bus 4. G1: 100 MVA, 11.2 kV, X = 8%; G2: 100 MVA, 11.2 kV, X = 8%;

M

T1: 11/110 kV, 100 MVA, X= 6%; T2: 11/110 kV, 100 MVA, X= 6%. All values in per unit.

Fig 5

x-x-x