Exam.Code:0930 Sub. Code: 6605

2053

B.E. (Electronics and Communication Engineering) Sixth Semester

EC-602: Fiber Optic Communication System

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Part. Use of scientific calculator is allowed.

x-x-x

I.	(a) Differentiate between repeater and optical amplifier.	(1)						
	(b) What is WDM?	(1)						
	(c) What is difference between splices and connectors?	(1)						
	(d) What are loss-limited light wave systems?	(1)						
	(e) What is fiber grating?	(1)						
	(f) Define internal quantum efficiency of LED.	(1)						
	(g) Differentiate between step index and graded index fiber.	(1)						
	(h) What is Four Wave mixing?	(1)						
	(i) Define dB and dBm. Which is preferred compared to mW as a unit of optical	power and						
	why?	(2)						
	Part- A							
П.	(a) Explain advantages and disadvantages of optical fiber systems over copper cable-based							
11.	communication system.	(4)						
	(b) Using ray theory, describe the mechanism of propagation of light in an optical f							
	is acceptance angle? How it is related to numerical aperture and refractive indices of the core							
	and cladding of fiber cable?	(6)						
ш.	(a) Explain with the help of ray diagram	(-)						
ш.	(1) single mode step index fiber							
	(2) multimode step index fiber							
	Compare the advantages and disadvantages of the two types for use as optical change	nel. (5)						
	(b) Discuss absorption loss in optical fibers, comparing and contrasting the in							
	extrinsic absorption mechanisms.	(5)						
IV.	(a) Explain the various dispersion mechanisms that affect data rate carrying ca	pability of						
	optical fibers. How this effect is tackled in practical high speed optical fiber systems? (7)							
	(b) Briefly list the requirements that must be satisfied by the materials to be s							
	fabrication of optical fibers.	(3)						
	Part-B							
v.	(a) Explain advantages and disadvantages of LED compared with injection Lase	r for use as						
	(a) Zapania at an analysis	(5)						

light source in optical fiber communication systems.

(5)

(5)

(b)]	Explain the p	rinc	iple of worl	king of La	ser.	Exp	lain with the	e help of	energy	level di	agram,
the	requirements	of	population	inversion	so	that	stimulated	emission	may	dominat	e over
spor	ntaneous emis	sio	n.								(5)

- VI. (a) Explain briefly free space optic communication. Explain the effect of weather on the optical signal propagation through free space. (4)
 - (b) Briefly describe the basic applications & types of optical amplifiers. (6)
- VII. (a) Briefly describe the principle of optical detection. A p-i-n photo diode gives one electron-hole pair for three incident photons at a wavelength of 0.8 μm. If all the electrons are collected, calculate:
 - (1) Quantum efficiency of the device
 - (2) Maximum possible bandgap energy
 - (3) Mean output photocurrent when the received optical power is 10⁻⁷ W.
 - (Plank's constant $h = 6.625 \times 10^{-34} \text{ J.s}$)
 - (b) Sketch a well-labelled Eye diagram and explain all the parameters that can be measured from an eye diagram. (5)