Exam.Code: 0934 Sub. Code: 6661

2053

B.E. (Electrical and Electronics Engineering) Fourth Semester

PC-EE-401: Electrical Machine - II

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Part. Assume suitably missing data, if any. x-x-x

- Q1.a. Explain the concept of cross-magnetizing effect in a synchronous machine with the help of appropriate phasor diagram. (2)
 - b. What is the stability limit of a 3-phase salient pole synchronous generator? (1)
 - Write the condition for voltage phasors during one dark and two bright lamp method for parallel operation of two synchronous machines.
 - d. Derive the expression for short-circuit-ratio (SCR). (3)
 - e. Draw the proper circuit arrangement for conducting the slip-test on a 3-phase salient pole synchronous machine. (3)

PART-A

- Q2.a. Write the procedural detail in step-by-step manner to find out voltage regulation using potier-triangle method.
- b. The following table gives the data for open-circuit and zero power factor load tests on a 6-pole, 440 V, 50 Hz, 3-phase, star connected alternator. The effective ohmic resistance between any two terminals of the alternator is 0.3 ohms and the per-phase synchronous reactance is 6.35 ohms. Find the voltage regulation at full load current at 0.8 p.f. lagging using synchronous impedance method.

Field current (A)	2	4	6	7	8	10	12	14	16	18
O. C. terminal voitage (V)	156	288	396	440	474	530	568	592	-	-
S. C. line current (A)	11	22	34	40	46	57	69	80	-	-
ZPFC terminal voltage (V)		-	-	0	80	206	314	398	460	504

(4, 6)

- Q3. Analyse the performance of a synchronous machine at constant load with variable excitation with the help of suitable phasor diagrams during:
 - a) motoring mode of operation.
 - b) generating mode of operation.

Also, give the expression for minimum excitation.

(5, 5)

- Q4. At any instant a 3-phase (symmetrical) short circuit develops at the terminals of a 100 MVA, 22 KV 50 Hz synchronous generator. However, before this instant *i.e.* during normal operation it is open circuited and is expected to give rated terminal voltage. Neglecting dc and double frequency components of current.
 - a) Determine the initial current(actual), and
 - b) find the current at the end of the three cycles and at the end of 20 s.

When

Base 100 MVA

Xd=1 pu, Xd =0.3 pu, Xd =0.2 pu.

 $T_{dw}=0.03 \text{ s}, T_f=1 \text{ s}.$

(2.4+4)

PART-B

- Q5. Derive the expressions for power-flow equations i.e. output active power, Pe(out), output reactive power Qe(out), and input mechanical power Pm(in) of a three-phase synchronous machine in terms of Zs, Ef, Vt, α and δ. The machine is working in generating mode.
 (3, 2, 3)
 Also, develop the equations i.e. Pe(out) and Pm(in) when armature resistance is neglected.
- Q6.a. Develop the speed and torque expressions for a magnet brushless dc (BLDC) motor.
- b. Explain the effect of change in excitation when the two alternators are operating in parallel. (5, 5)
- Q7. Write short note on the following
 - a. Linear induction motor.
 - b. Operation of Universal motor with AC supply.

(5,5)

(1, 1)