Exam.Code:0934 Sub. Code: 6663

2053

B.E. (Electrical and Electronics Engineering) **Fourth Semester**

PC-403: Control Engineering - I

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Part. Assume any missing data.

x-x-x

- 1. (a) Explain servomechanism.
 - (b) Differentiate between relative and absolute stability.
 - (c) Write torque-voltage analogy.
 - (d) Why do we generally choose decade system for Bode Plot?
 - (e) Explain significance of breakaway point in Root Locus.

(5 * 2)

PART-A

2. (a) Determine the gain X_6/X_1 using signal flow graph method.

(b) Determine transfer function for the following system using block diagram reduction method:

- 3. (a) Explain all time domain specifications with neat and clean diagram.
 - (b) Determine position, velocity and acceleration error constants for a unity feedback control system whose open loop transfer function is:

$$G(s) = \frac{K}{s(s+4)(s+10)}$$
. If $K = 400$, determine steady state error for a unit ramp input.

(5, 5)

- 4. (a) The open loop transfer function of a unity feedback system is $G(s) H(s) = \frac{K}{s(1+Ts)}$. It is desired that all roots of the characteristic equation must lie in the region to the left of the line s = ``-a''. Determine values of K and T required so that there are no roots on the right of line s = ``-a''.
 - (b) Discuss speed control of DC motor.

(5, 5)

PART-B

5. Draw a root locus for unity feedback system whose forward path transfer function is given by $G(s) = \frac{K(s+1)}{s^2(s+5)}$. Find the system gain corresponding to maximum value of damping ratio.

(10)

6. Comment on stability of the system using Nyquist Plot whose open loop transfer function is $G(s) H(s) = \frac{1}{s(1+2s)(1+s)}$. Also find gain margin and phase margin.

(10)

- 7. The open loop transfer function of a unity feedback system is
 - $G(s) = \frac{50}{s(s+10)(s+5)(s+1)}$. Determine
 - (i) Gain margin and phase margin using Bode Plot.
 - (ii) The value of steady state error coefficient for a gain of 10 db and value which will make the closed loop system marginally stable.

(10)